首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Fast Classification of Hyperspectral Images Using Globally Regularized Archetypal Representation With Approximate Solution
【24h】

Fast Classification of Hyperspectral Images Using Globally Regularized Archetypal Representation With Approximate Solution

机译:使用全局正则化原型表示和近似解对高光谱图像进行快速分类

获取原文
获取原文并翻译 | 示例

摘要

Representation learning plays a crucial rule in pattern recognition. Recently, sparse representation (SR) has become a popular technique in high-dimensional signal processing. In this paper, we provide an alternative archetypal representation (AR) to conduct the representation learning. Compared with SR, AR preserves the sparsity of the learned representation, but has a lower complexity and better interpretation. For the classification of hyperspectral image, spatial information plays an important role in improving the classification performance. Instead of representing each sample individually, we propose a globally regularized AR model, which uses graph regularization to include the contextual information into the learned representation. Although the entire model is convex, it is time consuming to obtain the optimal solution, which limits its large-scale applications. To address the computational issue, we further propose an efficient approximate solver based on line search on a feasible solution trajectory. It turns out that the approximate solution is very close the optimal solution, with a relative error less than 5% usually, but speeds up the optimization dozens of times. Experiments demonstrate that the learned representation with the approximate solution is discriminant comparable to the optimal solution. Using the learned representation as a high-level feature, a linear support vector machine works effectively to produce a high-accuracy classification.
机译:表征学习在模式识别中起着至关重要的规则。近年来,稀疏表示(SR)已成为高维信号处理中的一种流行技术。在本文中,我们提供了一种替代的原型表示(AR)来进行表示学习。与SR相比,AR保留了学习表示的稀疏性,但具有较低的复杂性和更好的解释性。对于高光谱图像的分类,空间信息在提高分类性能中起着重要的作用。我们提出了一个全局正则化的AR模型,而不是单独表示每个样本,该模型使用图正则化将上下文信息包括到学习的表示中。尽管整个模型都是凸的,但要获得最佳解决方案却很费时,这限制了它的大规模应用。为了解决计算问题,我们进一步提出了一种基于可行解轨迹的线搜索的高效近似解算器。事实证明,近似解与最优解非常接近,相对误差通常小于5%,但可将优化速度提高数十倍。实验表明,具有近似解的学习表示与可最佳解具有可比性。线性支持向量机将学习到的表示作为高级功能,可以有效地产生高精度分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号