首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >SPC without Control Limits and Normality Assumption: A New Method
【24h】

SPC without Control Limits and Normality Assumption: A New Method

机译:没有控制限制和正常性假设的SPC:一种新方法

获取原文
获取原文并翻译 | 示例

摘要

Control Charts (CC) are important Statistic Process Control (SPC) tools developed in the 20's to control and improve the quality of industrial production. The use of CC requires visual inspection and human judgement to diagnoses the process quality properly. CC assume normal distribution in the observed variables to establish the control limits. However, this is a requirement difficult to meet in practice since skewness distributions are commonly observed. In this research, a novel method that neither requires control limits nor data normality is presented. The core of the method is based on the Fuzzy ARTMAP (FAM) Artificial Neural Network (ANN) that learns special and non-special patterns of variation and whose internal parameters are determined through experimental design to increase its efficiency. The proposed method was implemented successfully in a manufacturing process determining the statistical control state that validate our method.
机译:控制图(CC)是20年代开发的重要统计过程控制(SPC)工具,用于控制和改善工业生产的质量。 CC的使用需要目视检查和人为判断才能正确诊断过程质量。 CC假定观测变量呈正态分布以建立控制极限。然而,由于通常观察到偏斜分布,因此这是在实践中难以满足的要求。在这项研究中,提出了一种既不需要控制限制也不需要数据正态性的新颖方法。该方法的核心是基于模糊ARTMAP(FAM)人工神经网络(ANN),该神经网络学习特殊和非特殊的变化模式,并通过实验设计确定其内部参数以提高其效率。所提出的方法在制造过程中成功实施,确定了验证我们方法的统计控制状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号