首页> 外文会议>Progress In Electromagnetic Research Symposium >Advanced optoelectronic simulations for ultrathin crystalline silicon solar cells with rationally designed nanopatternings
【24h】

Advanced optoelectronic simulations for ultrathin crystalline silicon solar cells with rationally designed nanopatternings

机译:具有合理设计的纳米图案的超薄晶体硅太阳能电池的高级光电模拟

获取原文

摘要

With the rapid development of photovoltaic (PV) technology, ultrathin crystalline silicon (c-Si) solar cells (SCs) with the thickness of only 10 !! 20 μm have attracted tremendous attention due to the reduced material loss and a high photoelectric conversion efficiency (PCE). However, the shortened active layer decreases the optical-path of incident light substantially and thus lowers optical absorption efficiency. The surface textures are the optimal ways to improve the light-harvesting efficiencies by suppressing the reflection of the entire system and coupling incident light into the underlying absorber layer. In this report, we study the light-trapping performances of two typical surface nanostructures [i.e., inverted-nanopyramid (INP) and nanopencil (NP)] with the aid of the three-dimensional (3D) optoelectronic simulation that based on the finite-element method (FEM). We investigated theoretically the light-harvesting properties of 20 μmthick c-Si thin films structured by INPs with three typical periodicities (i.e., 300, 670, and 1400 nm) and their combined designs (i.e., front, rear and double-sided surface textures). As a result, the optimized design yields a photocurrent density (Jph) of 39.86mA/cm2, which is about 76% higher than the flat counterpart and is only 3% lower than the value of Lambertian limit. Besides, we have verified experimentally the results, which are well-matched with the simulated one. For NP, excellent light-trapping can be achieved by adjusting the configurations of the top portion (i.e., pitch, diameter and height, et al.). The broadband enhancement in optical performance was obtained when compared to flat, nanopillar and nanocone, and the mechanism behind was fully illustrated by analyzing the absorption profiles. Moreover, the NP arrays with rational design were successfully applied in hybrid SCs by employing organic hole-transporting poly (3,4-ethylene dioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) on the top of the n-type c-Si, leading to simultaneously increase both in optical- and electro- properties. More results and explanations will be shown in a detailed way.
机译:随着光伏(PV)技术的飞速发展,超薄晶体硅(c-Si)太阳能电池(SCs)的厚度仅为10 !!由于减少的材料损耗和高的光电转换效率(PCE),20μm引起了极大的关注。然而,缩短的活性层大大降低了入射光的光路,从而降低了光吸收效率。通过抑制整个系统的反射并将入射光耦合到下面的吸收层中,表面纹理是提高光收集效率的最佳方法。在本报告中,我们基于有限元分析的三维(3D)光电模拟,研究了两种典型的表面纳米结构[即倒置的纳米金字塔(INP)和纳米铅笔(NP)]的捕光性能。元素方法(FEM)。我们从理论上研究了由具有三个典型周期(即300、670和1400 nm)的INP构成的20μm厚c-Si薄膜的光收集特性,以及它们的组合设计(即前,后和双面表面纹理) )。结果,经过优化的设计产生的光电流密度(Jph)为39.86mA / cm2,比平坦的电流密度高约76%,仅比朗伯极限值低3%。此外,我们通过实验验证了结果,该结果与模拟结果非常吻合。对于NP,可以通过调节顶部的形状(即节距,直径和高度等)来实现极好的光捕获。与平板状,纳米柱状和纳米锥状相比,光学性能得到了宽带增强,并且通过分析吸收曲线充分说明了其背后的机理。此外,通过在n型c-Si顶部使用有机空穴传输型聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS),将具有合理设计的NP阵列成功应用于混合SC中。 ,导致同时提高光学和电学性质。更多结果和解释将以详细方式显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号