...
首页> 外文期刊>Japanese journal of applied physics >Advanced surface passivation of epitaxial boron emitters for high-efficiency ultrathin crystalline silicon solar cells
【24h】

Advanced surface passivation of epitaxial boron emitters for high-efficiency ultrathin crystalline silicon solar cells

机译:外延硼发射极的高级表面钝化,用于高效超薄晶体硅太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we demonstrated an enhanced surface passivation of epitaxially grown boron-doped Si emitters by replacing thermal SiO2 as a passivation layer employed in a 15.9% efficient 21-mu m Si solar cell (88 cm(2)) on stainless steel with a remote-plasma atomic layer deposition (ALD) of an Al2O3 film. A thin Al2O3 film deposited by remote-plasma ALD was very effective at reducing the emitter saturation current density (J(0e)) of epitaxial p(+)-emitter to 16.2 fA/cm(2), compared to the J0e of 184.9 fA/cm(2) by thermal SiO2 films. This reduction in J(0e) enables an increase in an implied open-circuit voltage (iVoc) from 630 to 688mV. Quokka simulation shows that about a 1.1% absolute efficiency increase in the calculated baseline efficiency of a 15.1% of the ultrathin Si solar cell can be achievable by enhancing emitter surface passivation without changing the concentration in either the epi-emitter or epi-base. Finally, our results show that a high efficiency of 17.3% can be reached from the calculated baseline efficiency of 15.1% using the optimized conditions of an epitaxially grown emitter in combination with increasing the base doping concentration and improved base recombination lifetime. (C) 2017 The Japan Society of Applied Physics
机译:在这项工作中,我们证明了通过代替热SiO2作为不锈钢上15.9%效率的21微米Si太阳能电池(88 cm(2))中采用的钝化层,可以增强外延生长的掺硼Si发射极的表面钝化性能, Al2O3膜的远程等离子原子层沉积(ALD)。与184.9 fA的J0e相比,通过远程等离子体ALD沉积的Al2O3薄膜非常有效地将外延p(+)-发射极的发射极饱和电流密度(J(0e))降低至16.2 fA / cm(2)。 / cm(2)通过热SiO2膜形成。 J(0e)的这种减小使隐式开路电压(iVoc)从630增加到688mV。 Quokka仿真显示,通过提高发射极表面钝化而不改变落射发射极或落射基极中的浓度,可以在计算出的15.1%的超薄硅太阳能电池的基线效率中实现绝对效率提高约1.1%。最后,我们的结果表明,使用外延生长的发射极的优化条件,并结合增加基极掺杂浓度和改善基极复合寿命,可以从计算的基准效率15.1%达到17.3%的高效率。 (C)2017日本应用物理学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号