首页> 外文会议>Prognostics and System Health Management Conference >A LOF-Based Method for Abnormal Segment Detection in Machinery Condition Monitoring
【24h】

A LOF-Based Method for Abnormal Segment Detection in Machinery Condition Monitoring

机译:机械状态监测中基于LOF的异常节段检测方法

获取原文

摘要

Machinery condition monitoring has entered the era of big data and some research has been done based on big data. Abnormal segments, such as missing segments and drift segments, are inevitable in big data acquired from harsh industrial environment due to temporary sensor failures, network segment transmission delays, or accidental loss of some collected data and so on. Being independent of the machinery condition, the abnormal segments not only reduce the quality of the data for condition monitoring and big data analysis, but also bring a heavy computation load. However, there are few reports to address abnormal segment detection for further data cleaning in the field of machinery condition monitoring. Therefore, an abnormal segment detection method is proposed to improve the quality of big data. First, a sliding window is used to separate the data into different segments. Then, 14 kinds of time-domain features are extracted from each segment and principle component analysis (PCA) is employed to extract the principle components from these features. In addition, local outlier factor (LOF) is calculated based on the principle components to evaluate the degree of being an outlier for each segment. Finally, the data, including a drift segment from a real wind turbine, are used to verify the effectiveness of the proposed method.
机译:机械状态监测已进入大数据时代,并已基于大数据进行了一些研究。由于传感器临时故障,网络段传输延迟或某些收集的数据的意外丢失等原因,在从恶劣的工业环境中获取的大数据中,异常段(例如丢失段和漂移段)是不可避免的。异常段与机械状况无关,不仅降低了状态监测和大数据分析的数据质量,而且带来了沉重的计算负担。但是,很少有报告涉及异常节段检测以在机械状态监视领域中进行进一步的数据清理。因此,提出了一种异常段检测方法,以提高大数据的质量。首先,使用滑动窗口将数据分为不同的段。然后,从每个片段中提取14种时域特征,并采用主成分分析(PCA)从这些特征中提取主成分。另外,基于主成分计算局部离群因子(LOF),以评估每个片段的离群程度。最后,包括真实风力涡轮机的漂移段在内的数据被用来验证所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号