首页> 外文会议>Proceedings of the ASME dynamic systems and control conference 2009 >OPTIMIZATION OF BAYESIAN FILTERS AND HAMMERSTEIN-WIENER MODELS FOR EMG-FORCE SIGNALS USING GENETIC ALGORITHM
【24h】

OPTIMIZATION OF BAYESIAN FILTERS AND HAMMERSTEIN-WIENER MODELS FOR EMG-FORCE SIGNALS USING GENETIC ALGORITHM

机译:基于遗传算法的肌电信号贝叶斯滤波器和哈默斯汀-维纳模型的优化

获取原文
获取原文并翻译 | 示例

摘要

Processing electromyographic (EMG) signals for force estimation has many unknown variables that can influence the outcome or interpretation of the recorded EMG signal significantly. An array of filtering methods have been proposed over the past few years with the objective to classify motion for use in prosthetic hands. In this paper, we explore the optimal parameter settings of a set of Bayesian based EMG filters with the objective to use the filtered EMG data for system identification. System identification is utilized to establish a relationship between the measured EMG data and the generated force developed by fingers in a human hand. The proposed system identification is based on nonlinear Hammer stein-Wiener models. Optimization is also applied to find the optimal parameter settings for these nonlinear models. Genetic Algorithm (GA) is used to conduct the optimization for both, the optimal parameter settings for the Bayesian filters as well as the Hammerstein-Wiener model. The experimental results and optimization analysis indicate that the optimization can yield significant improvement in data accuracy and interpretation.
机译:处理用于估计力的肌电图(EMG)信号具有许多未知变量,这些变量可能会显着影响所记录EMG信号的结果或解释。在过去的几年中,已经提出了一系列过滤方法,目的是对用于假手的运动进行分类。在本文中,我们探索了一组基于贝叶斯的EMG滤波器的最佳参数设置,目的是将滤波后的EMG数据用于系统识别。系统识别用于建立测得的EMG数据和人手手指产生的力之间的关系。所提出的系统识别基于非线性Hammer stein-Wiener模型。还应用优化来找到这些非线性模型的最佳参数设置。遗传算法(GA)用于对贝叶斯滤波器以及Hammerstein-Wiener模型的最佳参数设置进行优化。实验结果和优化分析表明,优化可以显着提高数据准确性和解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号