首页> 外文会议>Recent Researches in Computational Techniques, Non-Linear Systems and Control >Optimized spatial filter mask using genetic algorithm and system identification for modeling sEMG and finger force signals
【24h】

Optimized spatial filter mask using genetic algorithm and system identification for modeling sEMG and finger force signals

机译:使用遗传算法和系统识别对sEMG和手指力信号进行建模的优化空间滤波器蒙版

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the investigation of the use of System Identification (SI) for modeling sEMG-Finger Force relation in the pursuit of improving the control of prosthetic hands. Finger force and sEMG data is generated by having the subject perform a number of random motions of the ring finger to simulate various force levels. Post-processing of the sEMG signal is performed using spatial filtering. The linear and nonlinear spatial filters are compared based on the 'kurtosis' improvements and also are based on the fit values of the models obtained using system identification. Some of the spatial filter masks are optimized using a Genetic Algorithm (GA) for the constrained and unconstrained cases. The resulting model fit value is utilized to serve as the cost function. The results are compared to the reported filter mask values in the literature. The unconstrained GA based filter mask values and in some instances the constrained GA based mask values performed better than the filter masks reported in literature.
机译:本文提出了使用系统识别(SI)建模sEMG-手指力关系的研究,以寻求改善假手的控制。手指力量和sEMG数据是通过让受试者执行无名指的许多随机运动来模拟各种力量水平而生成的。使用空间滤波对sEMG信号进行后处理。线性和非线性空间滤波器基于“峰度”改进进行比较,并且也基于使用系统识别获得的模型的拟合值。使用遗传算法(GA)针对受约束和不受约束的情况对某些空间滤镜进行了优化。所得的模型拟合值被用作成本函数。将结果与文献中报告的过滤器蒙版值进行比较。基于无约束GA的滤波器蒙版值,在某些情况下,基于受约束GA的蒙版值比文献报道的滤波器蒙版性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号