首页> 外文会议>Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design >Leakage- and variability-conscious circuit designs for the 0.5-v nanoscale CMOS era
【24h】

Leakage- and variability-conscious circuit designs for the 0.5-v nanoscale CMOS era

机译:0.5-v纳米级CMOS时代的漏电和易变性电路设计

获取原文
获取原文并翻译 | 示例

摘要

Low-voltage scaling limitations of memory-rich CMOS LSIs are one of the major problems in the nanoscale era because they cause the evermore-serious power crisis with device scaling. The problems stem from two unscalable device parameters: The first is the lowest necessary threshold voltage, Vt (Vt0), required for MOSFETs to keep the subthreshold current (leakage) low; unfortunately, this voltage usually has a high and constant value (e.g., 0.2--0.4 V). The second is the variation in Vt (ΔVt), that becomes more prominent in the nanoscale era. The ΔVt caused by the intrinsic random dopant fluctuation is the major source of various ΔVt components. It increases with device scaling and thus enhances various detrimental effects including variations in speed and/or the voltage margin of circuits, and it significantly increases soft-error rates in RAM cells and logic gates. For example, the speed variation (ΔA) of a MOSFET-that is, the ratio of the slowest speed at the highest Vt to the average speed at the average Vt (HVt0) -is approximately given as {1--Vtmax/(VDD --Vt0)}-1.2, where ΔVtmax is the maximum variation in Vt in a circuit, block, or chip, and VDD is the actual operating voltage. Fortunately, for conventional MOSFETs, the ΔA was negligible up to about the 100-nm device generation because of a VDD much higher than the Vt0 and a small enough ΔVtmax. In the nanoscale era below the 100-nm generation, however, the ΔA rapidly increases due to the ever-larger ΔVtmax with device scaling. If the VDD is reduced, the increase is accelerated as the VDD is reduced across 1 V and approaches Vt0. In practice, the VDD cannot be reduced at all since the increase in the ΔA must be confined to a tolerable value for reliable operation. It is the minimum operating voltage (Vmin), which is defined as the VDD necessary for the tolerable ΔA. Vmin is thus expressed as Vmin = Vt0 + (1+γ)ΔVtmax. Here, γ depends on ΔA and is 2.1 for ΔA = 1.6 and 3.1 for ΔA = 1.4. Due to an increased Vmin caused by such inherent features of the Vt0 and ΔVt, the VDD, which must be higher than Vmin, is facing the 1-V wall in the 65-nm generation and is expected to rapidly increase with further device scaling, thereby worsening the power crisis. For the LSI industry to continue to proliferate, the 1-V wall must be breached, and the door to the 0.5-V nanoscale era must be opened by reducing the Vmin. In addition to more stringent control of intra-die and inter-die Vt variations, developments of circuits and devices to reduce the Vt0 and ΔVtmax are extremely crucial.
机译:内存丰富的CMOS LSI的低电压缩放限制是纳米时代的主要问题之一,因为它们会导致器件缩放带来越来越严重的功耗危机。问题源于两个不可缩放的器件参数:第一个是MOSFET保持亚阈值电流(泄漏)低所需的最低阈值电压Vt(Vt0);不幸的是,该电压通常具有较高且恒定的值(例如0.2--0.4 V)。第二个是Vt的变化(ΔVt),在纳米时代变得更加突出。由固有随机掺杂物波动引起的ΔVt是各种ΔVt分量的主要来源。它随器件规模的增加而增加,从而增强了各种有害影响,包括电路速度和/或电压裕度的变化,并且显着增加了RAM单元和逻辑门的软错误率。例如,MOSFET的速度变化(ΔA),即最高Vt处的最低速度与平均Vt(HVt0)处的平均速度之比-近似为{1-Vtmax /(VDD --Vt0)}-1.2,其中ΔVtmax是电路,模块或芯片中Vt的最大变化,而VDD是实际工作电压。幸运的是,对于传统的MOSFET,由于VDD远远高于Vt0,并且ΔVtmax足够小,因此在大约100nm的器件中,ΔA可以忽略不计。但是,在100纳米以下的纳米时代,由于器件尺寸不断增大,ΔVtmax会导致ΔA快速增加。如果VDD减小,则当VDD在1 V范围内减小并接近Vt0时,加速将加快。实际上,由于必须将ΔA的增加限制在一个可容忍的值以确保可靠工作,因此根本无法降低VDD。它是最小工作电压(Vmin),定义为可容许的ΔA所需的VDD。因此,Vmin表示为Vmin = Vt0 +(1 +γ)ΔVtmax。此处,γ取决于ΔA,并且对于ΔA= 1.6为2.1,对于ΔA= 1.4为3.1。由于Vt0和ΔVt的这种固有特性导致Vmin升高,必须高于Vmin的VDD在65nm世代中面向1-V壁,并有望随着器件的进一步扩展而迅速增加,从而加剧了电力危机。为了使LSI工业继续发展,必须突破1-V壁,并且必须通过降低Vmin来打开0.5-V纳米时代的大门。除了更严格地控​​制管芯内和管芯间的Vt变化外,降低Vt0和ΔVtmax的电路和器件的开发也至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号