首页> 外文会议>Performance metrics for intelligent systems workshop 2009 >Internal Model Generation for Evolutionary Acceleration of Automated Robotic Assembly Optimization
【24h】

Internal Model Generation for Evolutionary Acceleration of Automated Robotic Assembly Optimization

机译:用于自动装配优化的进化加速的内部模型生成

获取原文
获取原文并翻译 | 示例

摘要

While machine learning algorithms have been successfully applied to a myriad of task configurations for parameter optimization, without the benefit of a virtual representation to permit offline training, the learning process can be costly in terms of time being spent and components being worn or broken. Parameter spaces for which the model is not known or are too complex to simulate stand to benefit from the generation of model approximations to reduce the evaluation overhead. In this paper, we describe a computational learning approach for dynamically generating internal models for Genetic Algorithms (GA) performance optimization. Through the process of exploring the parameter gene pool, a stochastic search method can effectively build a virtual model of the task space and improve the performance of the learning process. Experiments demonstrate that, in the presence of noise, neural network abstractions of the mappings of sequence parameters to their resulting performances can effectively enhance the performance of stochastic parameter optimization techniques. And results are presented that illustrate the benefits of internal model building as it pertains to simulated experiments of complex problems and to physical trials in robot assembly utilizing an industrial robotic arm to put together an aluminum puzzle.
机译:尽管机器学习算法已成功地应用于各种任务配置以优化参数,但没有虚拟表示的好处可以进行离线培训,但是学习过程可能会花费大量时间,并且零件会磨损或损坏。模型未知或过于复杂而无法模拟的参数空间无法从模型逼近的生成中受益,从而减少了评估开销。在本文中,我们描述了一种用于动态生成遗传算法(GA)性能优化内部模型的计算学习方法。通过探索参数基因库的过程,随机搜索方法可以有效地建立任务空间的虚拟模型,提高学习过程的性能。实验表明,在存在噪声的情况下,序列参数映射到其最终性能的神经网络抽象可以有效地增强随机参数优化技术的性能。结果表明,建立内部模型的好处在于它涉及复杂问题的模拟实验以及利用工业机械手将铝制拼图拼装在一起的机器人装配中的物理试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号