首页> 外文会议>Pattern recognition and machine intelligence >Data Representation in Machine Learning-Based Sentiment Analysis of Customer Reviews
【24h】

Data Representation in Machine Learning-Based Sentiment Analysis of Customer Reviews

机译:基于机器学习的客户评论情绪分析中的数据表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the problem of extracting opinions from natural language texts, which is one of the tasks of sentiment analysis. We provide an overview of existing approaches to sentiment analysis including supervised (Naive Bayes, maximum entropy, and SVM) and unsupervised machine learning methods. We apply three supervised learning methods-Naive Bayes, KNN, and a method based on the Jac-card index - to the dataset of Internet user reviews about cars and report the results. When learning a user opinion on a specific feature of a car such as speed or comfort, it turns out that training on full unprocessed reviews decreases the classification accuracy. We experiment with different approaches to preprocessing reviews in order to obtain representations that are relevant for the feature one wants to learn and show the effect of each representation on the accuracy of classification.
机译:在本文中,我们考虑了从自然语言文本中提取意见的问题,这是情感分析的任务之一。我们概述了现有的情感分析方法,包括监督(朴素贝叶斯,最大熵和SVM)和无监督机器学习方法。我们将三种监督学习方法-朴素贝叶斯(Naive Bayes),KNN和基于Jac-card索引的方法应用于互联网用户对汽车的评论数据集并报告结果。当得知用户对汽车的特定特征(例如速度或舒适性)的意见时,事实证明,对未经处理的完整评论进行培训会降低分类的准确性。我们尝试使用不同的方法对评论进行预处理,以便获得与想要学习的功能相关的表示,并显示每种表示对分类准确性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号