首页> 外文会议>Pattern recognition in bioinformatics >Drugs and Drug-Like Compounds: Discriminating Approved Pharmaceuticals from Screening-Library Compounds
【24h】

Drugs and Drug-Like Compounds: Discriminating Approved Pharmaceuticals from Screening-Library Compounds

机译:药物和类药物化合物:将批准的药物与筛选库化合物区分开

获取原文
获取原文并翻译 | 示例

摘要

Compounds in drug screening-libraries should resemble pharmaceu-ticals. To operationally test this, we analysed the compounds in terms of known drug-like filters and developed a novel machine learning method to discriminate approved Pharmaceuticals from "drug-like" compounds. This method uses both structural features and molecular properties for discrimination. The method has an estimated accuracy of 91% in discriminating between the Maybridge Hit-Finder library and approved Pharmaceuticals, and 99% between the NATDi-verse collection (from Analyticon Discovery) and approved Pharmaceuticals. These results show that Lipinski's Rule of 5 for oral absorption is not sufficient to describe "drug-likeness" and be the main basis of screening-library design.
机译:药物筛选库中的化合物应类似于药物。为了对此进行操作测试,我们根据已知的类药物过滤器对化合物进行了分析,并开发了一种新颖的机器学习方法来将批准的药物与“类药物”化合物区分开。此方法同时使用结构特征和分子特性进行区分。该方法在Maybridge Hit-Finder库和批准的药物之间进行区分时的估计准确度为91%,在NATDi-verse集合(来自Analyticon Discovery)和批准的药物之间进行区分的准确度为99%。这些结果表明,口服吸收的Lipinski的5法则不足以描述“药物样”,并成为筛选库设计的主要基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号