首页> 外文会议>Parameterized and exact computation >Small Vertex Cover Makes Petri Net Coverability and Boundedness Easier
【24h】

Small Vertex Cover Makes Petri Net Coverability and Boundedness Easier

机译:较小的顶点覆盖使Petri网的覆盖范围和边界更容易

获取原文
获取原文并翻译 | 示例

摘要

The coverability and boundedness problems for Petri nets are known to be ExPSPACE-complete. Given a Petri net, we associate a graph with it. With the vertex cover number k of this graph and the maximum arc weight W as parameters, we show that coverability and boundedness are in ParaPspace. This means that these problems can be solved in space O (ef(k, W)poly(n)), where ef(k, W) is some exponential function and poly(n) is some polynomial in the size of the input. We then extend the ParaPspace result to model checking a logic that can express some generalizations of coverability and boundedness.
机译:已知Petri网的可覆盖性和有界性问题是完全ExPSPACE的。给定一个Petri网,我们将一个图与其关联。以该图的顶点覆盖数k和最大弧权重W为参数,我们证明了可覆盖性和有界性在ParaPspace中。这意味着可以在空间O(ef(k,W)poly(n))中解决这些问题,其中ef(k,W)是一些指数函数,而poly(n)是输入大小的多项式。然后,我们将ParaPspace结果扩展到模型检查逻辑,该逻辑可以表达可覆盖性和有界性的一些概括。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号