首页> 外文会议>Optical microlithography XXVIII >7nm Logic Optical Lithography with OPC-Lite
【24h】

7nm Logic Optical Lithography with OPC-Lite

机译:具有OPC-Lite的7nm逻辑光学光刻

获取原文
获取原文并翻译 | 示例

摘要

The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin. As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below. Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10.12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four. In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and simple patterns of trims come from the simple 1D layout design. Experimental demonstration of these cut layers using design optimization, OPC-Lite, and conventional illuminators at the 7nm node dimensions will be presented. Lines were patterned with 193nm immersion with no complex OPC. The final line dimensions (22nm pitch) were achieved with pitch division 4.
机译:CMOS逻辑22nm节点是最后一次使用单图案完成的节点。它使用带有网格化设计规则(GDR)的高度规则的布局样式。较小的节点需要相同的常规布局样式,但关键层具有多种图案。正在使用“线条/切割”方法来实现良好的图案保真度和工艺裕度。如图1所示,即使采用“线”形图案,最终也将需要间距分割。对于“切割”模式,已证明设计-源-掩码优化(DSMO)在20nm及以下节点有效。发现单图形适合低至16nm,而双图形扩展光学光刻可切割至10.12nm节点。设计优化避免了三重图案的需要。可以在没有复杂OPC的情况下通过193nm浸没对线进行图案化。最终的线尺寸可以通过将间距除以二或四来实现。在本研究中,我们将使用简化的OPC的缩放比例扩展到关键FEOL和BEOL层的7nm节点。该测试模块是一个相当复杂的逻辑功能,具有约100k的组合逻辑和触发器门,根据先前的实验进行了缩放。仿真结果表明,对于逻辑尺寸为7nm的切割,可以使用最小间距为53nm的单个图形完成栅极层,可能使用最小间距为53nm的双重图形完成1x金属层中的一些,接触层将需要最小间距为68nm的三重图案。这些间距小于ArF NA = 1.35(72nm)的分辨率极限。但是,可以通过结合创新的SMO来分离这些图案,以达到小于光学分辨率的极限,并结合使用孔修复技术。三重图案着色的示例如图3所示。鳍和局部互连是由线条和修剪创建的。修整图案的数量分别是3倍(最小间距= 90nm)和2倍(最小间距= 120nm)。较少的蒙版,较大的间距和简单的装饰图案来自简单的1D布局设计。将使用7nm节点尺寸的设计优化,OPC-Lite和常规照明器对这些切割层进行实验演示。在没有复杂OPC的情况下,以193nm浸没对线进行构图。最终的线尺寸(22nm间距)是通过间距划分4实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号