首页> 外文会议>Optical Microlithography XIX pt.1 >Experimental characterization of the receding meniscus under conditions associated with immersion lithography
【24h】

Experimental characterization of the receding meniscus under conditions associated with immersion lithography

机译:与浸没式光刻技术相关的后退弯月面的实验表征

获取原文
获取原文并翻译 | 示例

摘要

Immersion lithography allows the semiconductor industry to create next-generation devices without requiring a large shift in infrastructure, making it an appealing extension to optical lithography. Improved resolution is enabled by placing an immersion fluid with a high refractive index between the final lens of the optical system and the resist-coated wafer. Several engineering challenges accompany the insertion of the immersion fluid in a production tool, one of the most important being the confinement of a relatively small amount of liquid to the under-lens region. The semiconductor industry demands high throughput, leading to relatively large wafer scan velocities and accelerations. These result in large viscous and inertial forces on the three-phase contact line between the liquid, air, and substrate. If the fluid dynamic forces exceed the resisting surface tension force then residual liquid is deposited onto the substrate. Liquid deposition is undesirable; as the droplets evaporate, they will deposit impurities on the substrate. In an immersion lithography tool, these impurities may result in defects. An experimental investigation was undertaken to study the static and dynamic contact angle under conditions that are consistent with immersion lithography. A semi-empirical model is described here to predict the velocity at which liquid loss occurs. This model is based on fluid physics and correlated to measurements of the dynamic and static contact angles. The model describes two regimes, an inertial and a capillary regime, characterized by two distinct liquid loss processes. The semi-empirical model provides the semiconductor industry with a useful predictive tool for reducing defects associated with film pulling.
机译:浸没式光刻技术使半导体行业无需大规模改变基础设施即可创建下一代设备,这使其成为光学光刻技术的引人注目的扩展。通过在光学系统的最终透镜和涂有抗蚀剂的晶片之间放置具有高折射率的浸液,可以提高分辨率。在生产工具中插入浸没流体会带来一些工程挑战,其中最重要的一项就是将相对少量的液体限制在镜下区域。半导体行业要求高吞吐量,从而导致相对较大的晶圆扫描速度和加速度。这些会在液体,空气和基材之间的三相接触线上产生较大的粘性和惯性力。如果流体动力超过阻力表面张力,则残留的液体会沉积在基材上。液体沉积是不希望的;随着液滴的蒸发,它们将在基板上沉积杂质。在浸没式光刻工具中,这些杂质可能会导致缺陷。进行了实验研究,以研究与浸没式光刻技术相一致的静态和动态接触角。在此描述了一个半经验模型来预测液体损失的速度。该模型基于流体物理学,并且与动态和静态接触角的测量相关。该模型描述了两种状态,惯性和毛细管状态,其特征在于两个截然不同的液体损失过程。半经验模型为半导体行业提供了一种有用的预测工具,可以减少与薄膜拉拔相关的缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号