首页> 外文会议>Open-Source Software for Scientific Computation (OSSC), 2011 International Workshop on >A rank-reducing and division-free algorithm for inverse of square matrices
【24h】

A rank-reducing and division-free algorithm for inverse of square matrices

机译:平方矩阵逆的一种降秩和无除法算法

获取原文
获取原文并翻译 | 示例

摘要

The paper puts forward a new direct algorithm for computing the inverse of a square matrix. The algorithm adopts a skill to compute the inverse of a regular matrix via computing the inverse of another lower-ranked matrix and contains neither iterations nor divisions in its computations-it is division-free. Compared with other direct algorithms, the new algorithm is easier to implement with either a recursive procedure or a recurrent procedure and has a preferable time complexity for denser matrices. Mathematical deductions of the algorithm are presented in detail and analytic formulas are exhibited for time complexity and spatial complexity. Also, the recursive procedure and the recurrent procedure are demonstrated for the implementation, and applications are introduced with comparative studies to apply the algorithm to tridiagonal matrices and bordered tridiagonal matrices.
机译:提出了一种新的直接算法来计算平方矩阵的逆。该算法采用一种技巧,可以通过计算另一个较低排名的矩阵的逆来计算正则矩阵的逆,并且在计算中既不包含迭代也不包含除法-它是无除法的。与其他直接算法相比,新算法更易于通过递归过程或递归过程实现,并且对于更密集的矩阵具有更好的时间复杂度。详细介绍了该算法的数学推论,并给出了时间复杂度和空间复杂度的解析公式。此外,还演示了递归过程和递归过程的实现,并通过比较研究介绍了应用程序,以将该算法应用于三对角矩阵和有界三对角矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号