首页> 外文会议>Neural and Stochastic Methods in Image and Signal Processing >Topological separation versus weight sharing in neural net optimization
【24h】

Topological separation versus weight sharing in neural net optimization

机译:神经网络优化中的拓扑分离与权重分配

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Recent advances in neural networks application development for real life problems have drawn attention to network optimization. Most of the known optimization methods rely heavily on a weight sharing concept for pattern separation and recognition. The shortcoming of the weight sharing method is attributed to a large number of extraneous weights which play a minimal role in pattern separation and recognition. Our experiments have shown that up to 97% of the connections in the network can be eliminated with little or no change in the network performance. Topological separation should be used when the size of the network is large enough to tackle real life problems such as fingerprint classification. Our research has focused on the network topology by changing the number of connections as secondary method of optimization. Our findings so far indicate that for large networks topological separation yields smaller network size which is more suitable for VLSI implementation. Topological separation is based on the error surface and information content of the network. As such it is an economical way of size reduction which leads to overall optimization. The differential pruning of the connections is based on the weight contents rather than number of connections. The training error may vary with the topological dynamics but the correlation between the error surface and recognition rate decreases to a minimum. Topological separation reduces the size of the network by changing its architecture without degrading its performance. The method also results in a network which is considerably smaller in size with a better performance. !16
机译:摘要:针对现实生活问题的神经网络应用程序开发的最新进展已引起人们对网络优化的关注。大多数已知的优化方法都严重依赖于权重共享概念来进行模式分离和识别。权重分配方法的缺点归因于大量无关的权重,它们在模式分离和识别中起着最小的作用。我们的实验表明,在网络性能几乎没有变化的情况下,可以消除多达97%的网络连接。当网络的大小足以解决现实生活中的问题(例如指纹分类)时,应使用拓扑分离。我们的研究集中在通过更改连接数作为优化的辅助方法来解决网络拓扑问题。到目前为止,我们的发现表明,对于大型网络,拓扑分离会产生较小的网络大小,这更适合VLSI实施。拓扑分离基于错误表面和网络的信息内容。因此,这是一种经济的减小尺寸的方法,可以实现整体优化。连接的差异修剪是基于重量含量而不是连接数。训练误差可能会随拓扑动态变化而变化,但是误差表面和识别率之间的相关性会降低到最小。拓扑分离通过在不降低性能的情况下更改其体系结构来减小网络的大小。该方法还导致网络的大小显着减小,并且具有更好的性能。 !16

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号