首页> 外文期刊>IEEE Transactions on Neural Networks >Automatic target detection using entropy optimized shared-weight neural networks
【24h】

Automatic target detection using entropy optimized shared-weight neural networks

机译:使用熵优化的共享权重神经网络进行自动目标检测

获取原文
获取原文并翻译 | 示例

摘要

Standard shared-weight neural networks previously demonstrated inferior performance to that of morphological shared-weight neural networks for automatic target detection. Empirical analysis showed that entropy measures of the features generated by the standard shared-weight neural networks were consistently lower than those generated by the morphological shared-weight neural networks. Based on this observation, an entropy maximization term was added to the standard shared-weight network objective function. In this paper, we present automatic target detection results for standard shared-weight neural networks trained with and without the added entropy term.
机译:以前,标准的权重神经网络在自动目标检测方面的性能优于形态学的权重神经网络。实证分析表明,标准权重神经网络生成的特征的熵测度始终低于形态权重神经网络生成的特征的熵测度。基于此观察,将熵最大化项添加到标准共享权网络目标函数中。在本文中,我们介绍了带有和不带有附加熵项训练的标准共享加权神经网络的自动目标检测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号