首页> 外文会议>Neural Information Processing pt.1; Lecture Notes in Computer Science; 4232 >Nonlinear Noise Reduction of Chaotic Time Series Based on Multi-dimensional Recurrent Least Squares Support Vector Machines
【24h】

Nonlinear Noise Reduction of Chaotic Time Series Based on Multi-dimensional Recurrent Least Squares Support Vector Machines

机译:基于多维递归最小二乘支持向量机的混沌时间序列非线性降噪

获取原文
获取原文并翻译 | 示例

摘要

In order to resolve the noise reduction in chaotic time series, a novel method based on Multi-dimensional version of Recurrent Least Square Support Vector Machine(MDRLS-SVM) is proposed in this paper. By analyzing the relationship between the function approximation and the noise reduction, we realized that the noise reduction can be implemented by the function approximation techniques. On the basis of the MDRLS-SVM and the reconstructed embedding phase theory, the function approximation in the high dimensional embedding phase space is carried out and the noise reduction achieved simultaneously.
机译:为了解决混沌时间序列中的降噪问题,提出了一种基于多维最小二乘支持向量机(MDRLS-SVM)的新方法。通过分析函数逼近与降噪之间的关系,我们意识到可以通过函数逼近技术来实现降噪。基于MDRLS-SVM和重构的嵌入相位理论,在高维嵌入相位空间中进行了函数逼近,同时实现了降噪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号