首页> 外文会议>Modelling, Simulation and Identification; Intelligent Systems and Control >PRINCIPAL COMPONENT ANALYSIS IN MULTIVARIATE MICROPHONES RESPONSE TO SIMULATED LEAKAGE IN METAL PIPELINE OF COMPRESSED AIR
【24h】

PRINCIPAL COMPONENT ANALYSIS IN MULTIVARIATE MICROPHONES RESPONSE TO SIMULATED LEAKAGE IN METAL PIPELINE OF COMPRESSED AIR

机译:多种麦克风对压缩空气金属管道中模拟泄漏的响应中的主成分分析

获取原文
获取原文并翻译 | 示例

摘要

Systems capable of diagnosing and characterizing a leakage in pipes are important not only to avoid losing material, but also for human health. For instance, in a building, a leakage of inflammable gas through pipes may lead to huge fire injuries or intoxication. For analysing the existence of gas material escaping from pipes, the acoustic method acts investigating the sounds signals in situations without leakage and in situations with simulated leakage. Microphones coupled to the lab scaled gas distributor pipe capture the acoustic signals in time which are further decomposed in their frequencies components by Fast Fourier Transform (FFT). Thus, a principal component analysis (PCA) is applied considering the amplitudes, in the respective frequency accused by the FFT method, as variables. It is revealed that it is possible to represent the system in smaller dimension size in which much of the original information preserves. For instance, plotting data in three dimensions, in terms of the three principal components, the representativity, or explained variance, is greater than 70% and some patterns become visually enlightened. In fact, 78 components are enough to get representativity greater than 90% against the original data that had the observations distributed in 6599 different amplitudes in frequency domain. In time domain, it is possible to note that the average absolute amplitude response from the microphones increases after disturbance but the farther it is its position related to the source of disturbance, the less it tends to increase.
机译:能够诊断和表征管道泄漏的系统不仅对避免材料损失非常重要,而且对人体健康也很重要。例如,在建筑物中,易燃气体通过管道泄漏可能导致严重的火灾或中毒。为了分析从管道逸出的气体物质的存在,在没有泄漏的情况下和在模拟泄漏的情况下,声学方法用于调查声音信号。耦合到实验室规模化气体分配器管道的麦克风会及时捕获声音信号,然后通过快速傅立叶变换(FFT)将其分解为频率分量。因此,应用主成分分析(PCA),将通过FFT方法控制的各个频率中的振幅作为变量。结果表明,可以用较小的尺寸表示系统,其中保留了许多原始信息。例如,就三个主要成分而言,在三个维度上绘制数据的表示性或解释的方差大于70%,并且某些样式在视觉上得到启发。实际上,相对于原始数据而言,有78个分量足以使代表度大于90%,原始数据的观测值分布在6599个不同的频域中。在时域中,可能会注意到,来自麦克风的平均绝对幅度响应在受到干扰后会增加,但是与干扰源相关的位置越远,其趋于增加的幅度就越小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号