首页> 外文会议>Micro- and Nanotechnology Sensors, Systems, and Applications IX >Development of Regenerative Peripheral Nerve Interfaces for Motor Control of Neuroprosthetic Devices
【24h】

Development of Regenerative Peripheral Nerve Interfaces for Motor Control of Neuroprosthetic Devices

机译:再生性周围神经接口用于神经修复装置运动控制的开发

获取原文
获取原文并翻译 | 示例

摘要

Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.
机译:截肢过程中遭受的创伤性周围神经损伤通常会导致患肢衰弱性神经性疼痛。现代修复技术可以直观,同时地控制多个自由度。然而,这些最新的设备对于每个自由度都需要单独的,独立的控制信号,这目前是不可能的。结果,截肢者拒绝接受高达75%的肌电设备,而是改用身体提供动力的假肢来提供微妙的感觉反馈。如果没有有意义和直观的感觉反馈,即使是最先进的肌电假体也仍然无知,繁重,并伴随着巨大的认知需求和精神疲劳。理想的修复设备是能够提供与环境交互所必需的直观体感反馈的设备。对于这种生物修复装置的设计至关重要的是开发人与机器之间可靠的生物接口。这种理想的患者-假肢接口可以传输传入的体感信息和传出的运动信号,用于神经控制的闭环反馈系统。我们的实验室已经开发了再生性周围神经接口(RPNI)作为生物神经接口,旨在将假肢装置与残肢中横切的周围神经稳定整合。 RPNI是通过手术将横切的周围神经的远端植入自体肌肉移植物中而构建的。我们实验室的动物实验表明,记录了来自RPNI植入啮齿动物和猴子的运动信号。在这里,我们获得了具有高信噪比(SNR)的高幅度EMG信号。

著录项

  • 来源
  • 会议地点 Anaheim(US)
  • 作者单位

    Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor.MI, 48109-5895,Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Ml;

    Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor.MI, 48109-5895;

    Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Ml;

    Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Ml;

    Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor.MI, 48109-5895,Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Ml;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nerve injury; regeneration; regenerative peripheral nerve interface; prosthetic control; neuroma;

    机译:神经损伤再生;周围神经再生界面假肢控制;神经瘤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号