首页> 外文会议>Micro- and Nanotechnology Sensors, Systems, and Applications >Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices
【24h】

Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

机译:用于神经高原装置电机控制的再生外周神经界面的开发

获取原文

摘要

Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.
机译:在截肢期间遭受的创伤外周枢神经损伤通常导致受影响的肢体中的神经性疼痛。现代假肢技术允许直观,同时控制多次自由度。然而,这些最先进的设备需要为每种自由度分开,独立的控制信号,这是目前不可能的。因此,令人愉快的拒绝高达75%的肌电器件偏好,而是使用提供微妙的感觉反馈的体力人工肢体。没有有意义和直观的感官反馈,即使是最先进的肌电假体仍然是短暂的,繁重,并且与巨大的认知需求和精神疲劳有关。理想的假肢装置是能够提供与环境相互作用必不可少的直观的躯体感应反馈的装置。对这种生物假体装置的设计至关重要是开发人与机器之间可靠的生物界面。这种理想的患者 - 假肢界面允许传入传入的躯体感觉信息和传动系统的电动机信号进行神经控制的闭环反馈系统。我们的实验室已经开发了再生外周神经界面(RPNI)作为生物神经界面,该生物神经界面设计用于稳定的假体装置在残留肢体中横断调的横向周性。通过手法植入趋化的周围神经的远端来构建RPNI,进入自生肌移植物。我们实验室中的动物实验显示了从RPNI植入啮齿动物和猴子的电机信号的记录。这里,我们实现了具有高信号的高幅度EMG信号,噪声(SNR)比率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号