首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Tunable Shortwave Infrared and Midwave Infrared Optoelectronics in Germanium/Germanium Tin Core/Shell Nanowires
【24h】

Tunable Shortwave Infrared and Midwave Infrared Optoelectronics in Germanium/Germanium Tin Core/Shell Nanowires

机译:锗/锗锡芯/壳纳米线中的可调短波红外和中空红外光电子

获取原文

摘要

Semiconductor nanowire (NW)-based optoelectronic devices can exhibit superior performances in comparison to their thin film counterparts, as a result of their improved electrical and optical properties. For example, the light-matter interaction in nanowires is enhanced due to the high surface-volume ratio and the light confinement effect resulting from the resonant cavity formed by the nanowire. The enhanced light absorption when using a nanowire geometry can be exploited to increase the responsivity of nanowire-based photodetectors. Light detection and emission at near-IR wavelengths (NIR, 0.8-1.5 μm) can be tailored via strain engineering using Ge-based NW devices. Furthermore, by incorporating Sn in the Ge lattice a direct band gap can be achieved across the short-wave-IR (SWIR, 1.5-3.0 μm) and mid-IR (MIR, 3-8 μm) wavelength range. Despite the equilibrium solubility of Sn in Ge being limited to ~1at.%, non-equilibrium growth methods recently developed in a chemical vapor deposition (CVD) reactor demonstrated a Sn content of 18 at.% with a room-temperature photoluminescence emission up to 4.0 μm. Similarly, when moving to the nanoscale a Sn incorporation well above 10 at.% with a direct band gap emission was demonstrated using Ge/GeSn core/shell NWs.
机译:除了它们改进的电气和光学性质的结果,半导体纳米线(NW)的光电器件可以表现出优异的性能与其薄膜对应物相比。例如,由于纳米线形成的谐振腔产生的高表面积比和光限制效果,纳米线中的灯具相互作用增强。可以利用使用纳米线几何形状时的增强光吸收以增加基于纳米线的光电探测器的响应度。近红外波长(NIR,0.8-1.5μm)的光检测和发射可以通过基于GE基NW器件通过应变工程来定制。此外,通过在GE格中掺入GE格子中,可以通过短波-R(SWIR,1.5-3.0μm)和中间IR(MIR,3-8μm)波长范围来实现直接带隙。尽管Sn在Ge中的Sn平衡率限于〜1At。%,最近在化学气相沉积(CVD)反应器中产生的非平衡生长方法证明了18℃的SN含量为18.%,室温光致发光发射率为18.% 4.0μm。类似地,当向纳米级载体升高到高于10时的Sn。使用GE / GESN核心/壳NWS对具有直接带隙发射的倍率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号