首页> 外文会议>European SOCF SOE Forum >Unraveling microstructure effects in Ni-YSZ anodes by 3D-analysis, FE-simulation and experimental characterization
【24h】

Unraveling microstructure effects in Ni-YSZ anodes by 3D-analysis, FE-simulation and experimental characterization

机译:通过3D分析,FE模拟和实验表征在Ni-YSZ阳极中解开微观结构效应

获取原文

摘要

Microstructure has an important influence on the performance of SOFC electrodes. In recent years considerable progress has been achieved in describing microstructure parameters (e.g. TPB, tortuosity, particle size distributions) on a quantitative level based on high-resolution tomography. However, the performance of fuel cell electrodes is based on a complex interplay of various transport and electrochemical processes. Hence, in order to unravel the influence of microstructure (and microstructure degradation) on the electrode performance, it is not sufficient to just quantify the critical microstructure parameters, but also to incorporate these parameters into models that allow simulation of electrode reaction mechanism including the complex interplay of various physico-chemical processes. In this study we first present the recent progress in the elaboration of the relationship between effective transport properties with the transport relevant parameters (i.e. percolating phase volume fraction, tortuosity, constrictivity, size distributions of particle bulges and bottlenecks). Furthermore a model was developed to simulate the complex reaction mechanism of Ni-YSZ anodes. This model is capable to incorporate all relevant microstructure parameters that influence charge transport (ionic, electric) and charge transfer (fuel oxidation). The model allows distinguishing between different components of the ASR, which are related either to limitations of charge transport (ionic, electric) or charge transfer (electrochemistry) within the anode. In literature the influence of active reaction sites (i.e. TPB) is strongly emphasized. In the present paper we also focus on limitations in charge transport due to microstructure effects. Examples are presented which highlight the effects of grain size on the effective electric and ionic conductivity and corresponding anode performance. The data are compared with experimental data from EIS. The presented methodology gives new insight on the effects of microstructure variation, because it links critical microstructure parameters with anode performance and with the associated ASR components from different rate limiting processes.
机译:微观结构对SOFC电极的性能具有重要影响。近年来,在基于高分辨率断层扫描的定量水平上描述了显微结构参数(例如TPB,曲折,粒度分布),实现了相当大的进展。然而,燃料电池电极的性能基于各种传输和电化学过程的复杂相互作用。因此,为了解开微观结构(和微结构降解)对电极性能的影响,仅量化临界微结构参数是不够的,而且还不足以将这些参数纳入允许模拟电极反应机制的模型中,包括复合物各种物理化学过程的相互作用。在这项研究中,我们首先介绍了在制定有效运输性能与传输相关参数之间关系的进展(即渗透相体积分数,粒子凸起和瓶颈的腐蚀性,收缩性,尺寸分布)。此外,开发了一种模型以模拟Ni-YSZ阳极的复杂反应机理。该模型能够包含影响电荷传输(离子,电)和电荷转移(燃料氧化)的所有相关的微观结构参数。该模型允许区分ASR的不同组件,其与阳极内的电荷传输(离子,电)或电荷转移(电化学)的限制相关。在文献中,强调了活性反应位点(即TPB)的影响。在本文中,我们还专注于由于微观结构效应引起的电荷运输的局限性。提出了实施例,其突出了晶粒尺寸对有效电和离子电导率和相应的阳极性能的影响。将数据与来自EIS的实验数据进行比较。呈现的方法为微观结构变化的影响提供了新的洞察力,因为它将关键微观结构参数与阳极性能链接以及来自不同速率限制过程的相关ASR组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号