...
首页> 外文期刊>Materials >3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance
【24h】

3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

机译:Ni-YSZ阳极中的3D微观结构效应:TPB长度对电化学性能的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.
机译:根据三相边界(TPB)长度与极化电阻(R ol> pol )之间的相关性,研究了电解质支持的电池Ni-YSZ阳极中3D微观结构与性能的关系。在950°C下对三个具有不同微观结构的Ni-YSZ阳极进行八个还原-氧化(redox)循环。通常,TPB长度与阳极性能相关。但是,定量结果也表明,TPB与R pol 之间没有简单的关系。降解机理在很大程度上取决于初始的微观结构。精细的微观结构表现出较低的TPB和R pol 降解速率。在精细的微观结构中,TPB的损失被发现是由于镍的粗化所致,而在粗糙的微观结构中,活性TPB的降低主要是由YSZ渗滤的损失所致。后者归因于与粗糙YSZ较低的烧结活性相关的瓶颈。粗阳极的YSZ连接性完全丧失,并且TPB active 的下降量达到了93%。出人意料的是,这种严重的微观结构降解并未导致电化学失效。讨论了不同阳极微结构的机械方案。这些方案基于耦合电荷转移和传输的模型,该模型允许使用TPB和有效属性作为输入。力学方案描述了微观结构对电流分布的影响,这解释了所观察到的TPB长度与阳极性能之间的复杂关系。在粗阳极中观察到的YSZ渗滤损失是无害的,因为电化学活性集中在狭窄的活性层中。如果针对所谓的短程效应校正体积平均特性(TPB active ,有效的离子电导率),则可以可靠地预测阳极性能,这对于窄的活性尤为重要。层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号