首页> 外文会议>International Conference on Pattern Recognition in Bioinformatics >Consensus of Ambiguity: Theory and Application of Active Learning for Biomedical Image Analysis
【24h】

Consensus of Ambiguity: Theory and Application of Active Learning for Biomedical Image Analysis

机译:歧义的共识:生物医学图像分析的主动学习理论与应用

获取原文

摘要

Supervised classifiers require manually labeled training samples to classify unlabeled objects. Active Learning (AL) can be used to selectively label only "ambiguous" samples, ensuring that each labeled sample is maximally informative. This is invaluable in applications where manual labeling is expensive, as in medical images where annotation of specific pathologies or anatomical structures is usually only possible by an expert physician. Existing AL methods use a single definition of ambiguity, but there can be significant variation among individual methods. In this paper we present a consensus of ambiguity (CoA) approach to AL, where only samples which are consistently labeled as ambiguous across multiple AL schemes are selected for annotation. CoA-based AL uses fewer samples than Random Learning (RL) while exploiting the variance between individual AL schemes to efficiently label training sets for classifier training. We use a consensus ratio to determine the variance between AL methods, and the CoA approach is used to train classifiers for three different medical image datasets: 100 prostate histopathology images, 18 prostate DCE-MRI patient studies, and 9,000 breast histopathology regions of interest from 2 patients. We use a Probabilistic Boosting Tree (PBT) to classify each dataset as either cancer or non-cancer (prostate), or high or low grade cancer (breast). Trained is done using CoA-based AL, and is evaluated in terms of accuracy and area under the receiver operating characteristic curve (AUC). CoA training yielded between 0.01-0.05% greater performance than RL for the same training set size; approximately 5-10 more samples were required for RL to match the performance of CoA, suggesting that CoA is a more efficient training strategy.
机译:监督分类器需要手动标记培训样本以对未标记的对象进行分类。主动学习(AL)可用于仅选择性地标记“模棱两可”的样本,确保每个标记的样本最大地提供信息。这在手动标签昂贵的应用中非常宝贵,如在医学图像中,其中特定病理学或解剖结构的注释通常只能由专家医师才能。现有的AL方法使用单一的歧义定义,但各种方法之间可能存在显着变化。在本文中,我们向A1呈现了歧义(COA)方法的共识,其中仅选择持续标记为跨多个A1方案的模糊的样品进行注释。基于COA的AL使用比随机学习(RL)更少的样本,同时利用各个A1方案之间的差异,以有效地标记分类器培训的培训集。我们使用共识比率来确定Al方法之间的差异,COA方法用于培训三种不同的医学图像数据集的分类器:100个前列腺组织病理学图像,18例前列腺DCE-MRI患者研究,以及来自的9,000个乳腺组织病理学区域2名患者。我们使用概率升压树(PBT)将每个数据集分类为癌症或非癌症(前列腺)或高或低级癌症(乳房)。培训是使用基于COA的AL完成的,并且在接收器操作特性曲线(AUC)下的精度和面积上进行评估。 COA培训比RL培训比相同训练设定尺寸更高的0.01-0.05%; RL需要约5-10个样品,以匹配COA的性能,这表明COA是一种更有效的培训策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号