首页> 外文会议>Joint Meeting of the US Sections of the Combustion Institute >Modeling and Simulation of Nanoparticle Coagulation in High Reynolds Number Incompressible Flows
【24h】

Modeling and Simulation of Nanoparticle Coagulation in High Reynolds Number Incompressible Flows

机译:高雷诺数不可压缩流动中纳米粒子凝固的建模与仿真

获取原文

摘要

Ultrafine particles play an integral role in a wide variety of physical/chemical phenomena and processes. These include but are not restricted to synthesis of nanostructured materials (nanoparticles and coatings). Nanostructured materials are expected to play an increasingly significant role in many major industries as we enter the new millennium. There are several technologies which can be employed in the manufacture of nanoscale materials (films, particles, etc). Vapor-phase methodologies are by far the most favored because of chemical purity and cost considerations. The formation of very fine particles from vapor encompasses a large number of physical/chemical phenomena. When driven from gas phase precursors (as is typical in many cases), one must address vapor phase chemistry, particle nucleation and growth (coagulation/coalescence, condensation, etc). Sundaram and Collins investigated the influence of particle parameters on collision frequencies in a turbulent particle laden suspension leading to coagulation and found that the magnitude of the minimum particle collision frequency was more strongly correlated with the turbulent motions at the integral scale. Reade and Collins considered the coagulation and growth of aerosol particles in an initially mono-disperse population of particles subject to isotropic turbulence. Other researchers have used sectional methods in modeling the particulate phase, including extending a one-dimensional sectional technique to two dimensions to obtain the evolution of both particle size and shape during gas phase production of titania and silica powders; Pyykonen and Jokiniemi employed the sectional method in conjunction with a Reynolds-averaged Navier-Stokes solver, to simulate aerosol formation via nucleation, condensation and coagulation. In this work we perform direct numerical simulation (DNS) of a coagulating aerosol in a two-dimensional, incompressible, isothermal planar jet. The evolution of the particle field is obtained by utilizing a sectional model to approximate the aerosol general dynamic equation (GDE). The GDE is written in discrete form as a population balance on each cluster or particle size and describes particle dynamics under the influence of various physical phenomena: convection, diffusion, and coagulation. This representation facilitates the capture of the underlying physics in a time-accurate manner. The goal is thus to facilitate better prediction of fluid-particle systems and to elucidate the underlying structure of vapor-phase particle growth processes.
机译:超细颗粒在各种各样的物理/化学现象和过程中起不可或缺的作用。这些包括但不限于合成纳米结构材料(纳米粒子和涂层)。当我们进入新千年时,预计纳米结构材料将在许多主要行业中发挥越来越重要的作用。存在若干技术可以在纳米级材料(薄膜,颗粒等)中使用的技术。由于化学纯度和成本考虑,气相方法是迄今为止最受青睐的。来自蒸汽的非常细颗粒的形成包括大量的物理/化学现象。当从气相前体(如许多情况下典型)驱动时,必须解决气相化学,颗粒成核和生长(凝血/聚结,缩合等)。 Sundaram和Collins研究了粒子参数对湍流颗粒悬浮液中的碰撞频率的影响,导致凝固,发现最小颗粒碰撞频率的大小与整体尺度的湍流运动更强烈地相关。 Reade和Collins认为气溶胶颗粒的凝结和生长最初是单分散的颗粒粒子受到各向同性湍流。其他研究人员使用截面方法在建模颗粒相中,包括将一维截面技术延伸至两个尺寸,以获得二氧化钛和二氧化硅粉末的气相产生期间颗粒尺寸和形状的演变; Pyykonen和Jokiniemi与雷诺平均的Navier-Stokes求解器一起使用截面方法,以通过成核,冷凝和凝固模拟气溶胶形成。在这项工作中,我们在二维,不可压缩的等温平面射流中执行凝固气溶胶的直接数值模拟(DNS)。通过利用截面模型来实现粒子场的进化,以近似气溶胶一般动态方程(GDE)。 GDE以离散形式写入每个簇或粒度的人口平衡,并描述了各种物理现象的影响下的粒子动态:对流,扩散和凝固。该表示有助于以时间准确的方式捕获底层物理。因此,目标是为了更好地预测流体颗粒系统并阐明气相颗粒生长过程的底层结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号