...
首页> 外文期刊>Iran Journal of Computer Science >A coarse-grid incremental pressure projection method for accelerating low Reynolds number incompressible flow simulations
【24h】

A coarse-grid incremental pressure projection method for accelerating low Reynolds number incompressible flow simulations

机译:用于加速低雷诺数不可压缩流量模拟的粗栅增量压力投影方法

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Coarse-grid projection (CGP) multigrid techniques are applicable to sets of equations that include at least one decoupled linear elliptic equation. In CGP, the linear elliptic equation is solved on a coarsened grid compared to the other equations, leading to savings in computation time and complexity. One of the most important applications of CGP is when a pressure correction scheme is used to obtain a numerical solution to the Navier–Stokes equations. In that case, there is an elliptic pressure Poisson equation. Depending on the pressure correction scheme used, the CGP method and its performance in terms of acceleration rate and accuracy level vary. The CGP framework has been established for non-incremental pressure projection techniques. In this article, we apply CGP methodology for the first time to incremental pressure correction schemes. Both standard and rotational forms of the incremental algorithms are considered. The influence of velocity Dirichlet and natural homogenous boundary conditions in regular and irregular domains with structured and unstructured triangular finite element meshes is investigated. L2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$L^2$$end{document} norms demonstrate that the level of accuracy of the velocity and the pressure fields is preserved for up to three levels of coarsening. For the test cases investigated, the speedup factors range approximately from 1.2 to 102.7.
机译:摘要粗略网格投影(CGP)多重资源技术适用于包括至少一个解耦线性椭圆方程的等式集。在CGP中,与其他方程相比,线性椭圆方程在较粗糙的网格上求解,导致计算时间和复杂性节省。 CGP最重要的应用是当使用压力校正方案来获得Navier-Stokes方程的数值解决方案。在这种情况下,存在椭圆形压力泊松方程。根据所使用的压力校正方案,CGP方法及其在加速率和精度水平方面的性能变化。已经为非增量压力投影技术建立了CGP框架。在本文中,我们第一次将CGP方法应用于增量压力校正方案。考虑了增量算法的标准和旋转形式。研究了速度小芯片和天然均匀边界条件在规则和不规则结构中具有结构化和非结构化三角形有限元网格的影响。 l2 documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssys} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $$ l ^ 2 $$ l ^ 2 $$ end {document}规范表明,速度和压力场的准确性水平保持在最多三个浓度。对于调查的测试用例,加速因子范围大约为1.2至102.7。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号