首页> 外文会议>Electron Devices Meeting, 1971 International >High performance pedestal transistor for subnanosecond logic
【24h】

High performance pedestal transistor for subnanosecond logic

机译:亚纳秒级逻辑的高性能基座晶体管

获取原文

摘要

Performance improvement in high-speed bipolar transistors has followed obvious monotonic trends, limited by the available fabrication art: narrower emitters, smaller areas, narrower bases, the heaviest possible base doping, and, more recently, the square-like arsenic emitter profile. In establishing a well-defined, heavily doped narrow base, the collector doping is increased or, more conveniently, the base diffusion is run into a shallow buried layer. In addition to defining the short base, the heavily doped collector minimizes the Kirk effect, which appears at the high current densities used. When a heavily doped base meets a heavily doped buried layer, a large junction capacitance per unit area results. The actual base diffusion area is an order of magnitude greater than the active emitter area in typical double-base stripe, single-emitter stripe designs. Hence the proposed transistor uses a structure in which a pedestal of high doping level (1017-1018cm-3) projects upward from the buried layer under the active emitter area only. The epitaxy is doped very lightly (2-5 times 10^{15}cm-3) so that the high capacitance per unit area contributing to CCBappears only where it is unavoidable. Such lightly doped epitaxy helps to reduce collector-to-isolation capacitance, in spite of a slightly larger collector-isolation junction area. Multicircuit chips incorporating this device have been made by using two successive epitaxial depositions. After the first deposition, diffusions are made for isolation walls and for the pedestal. Out-diffusion during subsequent processing completes the isolation and brings the pedestal to the desired distance from the surface of the second epitaxial deposition The control of epitaxy required is the same as that for a conventional device, since the critical steps are the second deposition and the succeeding processes, which are nearly the same. A comparison of transistors having identical geometries (0.1 × 0.5 mil2arsenic emitter) gave the following results: Pedestal Collector Standard Collector CCB0.13pF 0.24pF CISO0.18pF 0.27pF fT(typical peak) 5GHz 4.9GHz When pedestal devices with 0.1 mil minimum oxide holes -and 0.2 mil clearances were used, loaded circuit delays of about 360 ps were found in a valid logic circuit system designed for practical application in large, fast machines. A similar model with nonpedestal transistors ran about 500 ps.
机译:高速双极晶体管的性能改进遵循明显的单调趋势,受到现有制造技术的限制:更窄的发射极,更小的面积,更窄的基极,最重的基极掺杂以及最近的方形砷发射极轮廓。在建立轮廓分明的,重掺杂的窄基极时,增加了集电极掺杂,或更方便的是,基极扩散进入了浅埋层。除了定义短基极外,重掺杂的集电极还使柯克效应最小化,该效应在所用的高电流密度下出现。当重掺杂的基极遇到重掺杂的掩埋层时,会导致每单位面积的结电容很大。在典型的双基带,单发射极带设计中,实际的基极扩散区域比有源发射极区域大一个数量级。因此,所提出的晶体管使用了一种结构,其中高掺杂水平的基座(10 17 -10 18 cm -3 )从晶格向上突出。仅在有源发射极区域下方的掩埋层。外延掺杂非常轻( 2-5乘以10 ^ {15} cm -3 ),因此每单位面积的高电容有助于C CB < / inf>仅在不可避免的地方出现。尽管集电极-隔离结的面积稍大,但这种轻掺杂外延有助于减小集电极-隔离的电容。通过使用两次连续的外延沉积已经制造了包含该器件的多电路芯片。第一次沉积后,对隔离墙和基座进行扩散。在后续处理过程中的向外扩散完成了隔离,并使基座距第二外延沉积的表面所需的距离。外延的控制与常规设备的控制相同,因为关键步骤是第二沉积和沉积。随后的过程,几乎是相同的。比较具有相同几何形状(0.1×0.5 mil 2 砷发射极)的晶体管,得出以下结果:基座收集器标准收集器C CB 0.13pF 0.24pF C ISO 0.18pF 0.27pF f T (典型峰值)5GHz 4.9GHz当带有最小0.1 mil氧化孔的基座设备- 并使用了0.2 mil的间隙,在为大型,快速机器的实际应用而设计的有效逻辑电路系统中,发现了约360 ps的负载电路延迟。具有非基座晶体管的类似模型的运行速度约为500 ps。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号