首页> 外文会议>Conference on metrology, inspection, and process control for microlithography XXXI >EPE analysis of sub-NIO BEoL flow with and without fully self-aligned via using Coventor SEMulator3D
【24h】

EPE analysis of sub-NIO BEoL flow with and without fully self-aligned via using Coventor SEMulator3D

机译:使用COVETOR SEMULATOR3D对亚NIO BEOL流的EPE分析,无完全自对准

获取原文

摘要

During the last few decades, the semiconductor industry has been able to scale device performance up while driving costs down. What started off as simple geometrical scaling, driven mostly by advances in lithography, has recently been accompanied by advances in processing techniques and in device architectures. The trend to combine efforts using process technology and lithography is expected to intensify, as further scaling becomes ever more difficult. One promising component of future nodes are "scaling boosters", i.e. processing techniques that enable further scaling. An indispensable component in developing these ever more complex processing techniques is semiconductor process modeling software. Visualization of complex 3D structures in SEMulator3D, along with budget analysis on film thicknesses, CD and etch budgets, allow process integrators to compare flows before any physical wafers are run. Hundreds of "virtual" wafers allow comparison of different processing approaches, along with EUV or DUV patterning options for defined layers and different overlay schemes. This "virtual fabrication" technology produces massively parallel process variation studies that would be highly time-consuming or expensive in experiment. Here, we focus on one particular scaling booster, the fully self-aligned via (FSAV). We compare metal-via-metal (me-via-me) chains with self-aligned and fully-self-aligned via's using a calibrated model for imec's N7 BEoL flow. To model overall variability, 3D Monte Carlo modeling of as many variability sources as possible is critical. We use Coventor SEMulator3D to extract minimum me-me distances and contact areas and show how fully self-aligned vias allow a better me-via distance control and tighter via-me contact area variability compared with the standard self-aligned via (SAV) approach.
机译:在过去的几十年中,半导体行业已经能够在驱动成本的同时缩放设备性能。最初开始作为简单的几何缩放,主要通过光刻进步驱动,最近伴随着加工技术和设备架构的进步。使用流程技术和光刻结合努力的趋势预计会加剧,因为进一步的缩放变得更加困难。未来节点的一个有前途的组成部分是“缩放助推器”,即处理技术进一步缩放的技术。开发这些更复杂的处理技术的不可或缺的组成部分是半导体过程建模软件。 Semulator3D中复杂3D结构的可视化,以及胶片厚度,CD和蚀刻预算的预算分析,允许过程集成商在运行任何物理晶片之前比较流动。数百个“虚拟”晶片允许比较不同的处理方法,以及用于定义的层和不同覆盖方案的EUV或DUV图案化选项。这种“虚拟制造”技术产生大量平行的过程变化研究,在实验中会产生高度耗时或昂贵。在这里,我们专注于一个特定的缩放助推器,全面的通过(fsav)。我们使用校准模型为IMEC的N7 BEOL流程进行了自对准和完全自对准的通过自对准和完全自对准的通过自对准和完全自我对齐的型号。为了模拟整体变化,尽可能多的可变形来源的3D蒙特卡罗建模至关重要。我们使用Coventor Semulator3D提取最小ME-ME距离和接触区域,并显示与标准通过(SAV)方法(SAV)接近的标准相比,如何完全自对准通孔允许更好的通孔距离控制和更紧密的通孔距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号