首页> 外文会议>IEEE International Integrated Reliability Workshop >Temperature (5.6-300K) Dependence Comparison of Carrier Transport Mechanisms in HfO_2/SiO_2 and SiO_2 MOS Gate Stacks
【24h】

Temperature (5.6-300K) Dependence Comparison of Carrier Transport Mechanisms in HfO_2/SiO_2 and SiO_2 MOS Gate Stacks

机译:HFO_2 / SiO_2和SiO_2 MOS栅极堆栈中载波传输机制的温度(5.6-300k)依赖性比较

获取原文

摘要

Temperature dependent measurements have been used to examine transport mechanisms and energy band structure in MOS devices. In this study, a comparison between high-k HfO_2 dielectrics and conventional SiO_2 dielectrics is made to investigate dielectric specific thermally activated mechanisms. Temperature dependent measurements on large area n/pMOSFETs composed of SiO_2 and HfO_2/SiO_2 gate dielectrics were performed from 5.6K to 300K. A large increase in the gate leakage current is observed at the formation of the minority carrier channel. The data indicate that gate leakage current prior to the formation of the minority channel is carrier rate limited while gate leakage current is tunneling rate limited above the threshold voltage. Gate leakage current measurements show two distinct Arrhenius transport regimes for both SiO_2 and HfO_2 gate dielectrics. The Arrhenius behavior of the gate leakage current is characterized by a strong temperature dependent regime and a weak temperature dependent regime. The activation energy of the strong temperature regime is found to vary with the applied gate voltage. Frenkel-Poole or other electric field models are able to explain the gate voltage dependence of the gate leakage current for the low-temperature/voltage regime investigated. The data suggest that the variation of the activation energy for the Arrhenius behavior is weakly electric-field driven and strongly voltage, or Fermi energy level, driven. The weak electric field and strong voltage dependence of the thermal characteristics of the gate leakage current may point to trap densities within the HfO_2 that vary in energy (hence applied voltage) as responsible for the observed activation energies. Trap assisted tunneling (or hopping) could be implicated as the transport mechanism.
机译:温度依赖性测量已被用于检查MOS器件中的传送机构和能带结构。在该研究中,使高k HFO_2电介质和传统的SiO_2电介质之间的比较,以研究介电特定的热活化机构。在5.6K至300K中执行由SiO_2和HFO_2 / SIO_2栅极电介质组成的大面积N / PMOSFET上的温度依赖性测量。在少数载波通道的形成时观察到栅极漏电流的大幅增加。数据指示在形成少数群体通道之前的栅极漏电流是载流速率限制,而栅极漏电流是高于阈值电压的隧道速率。栅极泄漏电流测量显示SiO_2和HFO_2栅极电介质的两个不同的Arrhenius传输制度。栅极泄漏电流的Arrhenius行为的特征在于强大的温度依赖性状态和弱温依赖性方案。发现强温度的激活能量随所施加的栅极电压而变化。 Frenkel-Poole或其他电场模型能够解释所研究的低温/电压状态的栅极漏电流的栅极电压依赖性。数据表明,Arrhenius行为的激活能量的变化是弱电场驱动和强电压,或者费米能级驱动。栅极泄漏电流的热特性的弱电场和强电压依赖性可以点为在能量(因此施加电压)中变化的HFO_2内的捕集密度,与观察到的激活能量负责。陷阱辅助隧道(或跳跃)可以涉及运输机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号