首页> 外文会议>International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion >Thermal Stresses in SiC Crystals Grown by the Physical Vapor Transport Method
【24h】

Thermal Stresses in SiC Crystals Grown by the Physical Vapor Transport Method

机译:物理气相传输法生长的SiC晶体中的热应力

获取原文

摘要

Wide-bandgap silicon carbide (SiC) is a promising semiconductor material for electronic and opto-electronic devices which operate under high power, high temperature, high frequency and intense radiation conditions. The bulk growth of SiC by physical vapor transport (PVT), or modified Lely method involves many important physical phenomena, such as electromagnetic field, radio frequency induction heating, conduction and radiation heat transfer, sublimation and condensation, mass transfer, and so on. Since direct measurement of temperature, flow velocity, species concentration, and growth rate is extremely difficult, physics-based modeling is an important research tool by which one can develop a better understanding of the transport phenomena in a SiC growth system. A comprehensive process model for SiC bulk growth by the physical vapor transport method has been developed that incorporates the calculations of radio frequency (RF) induction heating, heat and mass transfer, growth kinetics and thermal stress. The electromagnetic field is calculated by using a magnetic vector potential theory, and temperature distribution is computed using a coupled radiation and conduction model. A kinetics model for silicon carbide growth is used that is based on Hertz-Knudsen equation and relates supersaturation to the growth rate. The vapor species concentration profiles in the growth chamber are obtained by using a one-dimension advective mass transfer model. Thermally-induced stresses in the growing SiC crystals arc obtained by using a finite-volume based thermoclastic anisotropic model for hexagonal SiC polytypes. The transport equations for electromagnetic field, heat transfer, and species transport are solved using a finite-volume based numerical scheme called MASTRAPP (Multizone Adaptive Scheme for Transport and Phase Change Process). Electromagnetic field and temperature field distribution in a 2-inch silicon carbide (SiC) growth system have been obtained, and growth rates have been predicted and compared with the experimental ones. Thermal stress distributions in the growing crystals are obtained for different seed mounting conditions.
机译:宽带隙碳化硅(SiC)是一种有前途的半导体材料,用于在高功率,高温,高频和强辐射条件下工作的电子和光电设备。通过物理气相传输(PVT)或改良的Lely方法使SiC大量生长涉及许多重要的物理现象,例如电磁场,射频感应加热,传导和辐射热传递,升华和冷凝,质量传递等。由于直接测量温度,流速,物种浓度和生长速率非常困难,因此基于物理学的建模是一项重要的研究工具,通过它可以更好地了解SiC生长系统中的传输现象。已开发出一种通过物理气相传输法生长SiC块的综合过程模型,该模型结合了射频(RF)感应加热,传热和传质,生长动力学和热应力的计算。使用磁矢量势理论计算电磁场,并使用耦合的辐射和传导模型计算温度分布。使用基于Hertz-Knudsen方程的碳化硅生长动力学模型,并将过饱和度与生长速率相关。通过使用一维对流传质模型获得生长室中的蒸气物种浓度分布图。通过使用基于有限体积的六角形SiC多型热碎屑各向异性模型获得生长的SiC晶体中的热诱导应力。使用称为MASTRAPP(用于传输和相变过程的多区域自适应方案)的基于有限体积的数值方案,可以求解电磁场,热传递和物质传输的传输方程。获得了2英寸碳化硅(SiC)生长系统中的电磁场和温度场分布,并预测了生长速率并将其与实验值进行比较。对于不同的晶种安装条件,可以获得生长晶体中的热应力分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号