首页> 外文会议>Conference on terahertz, RF, millimeter, and submillimeter-wave technology and applications >Si, SiGe, InP, Ⅲ-N and p-diamond FETs and HBTs for sub-Terahertz and Terahertz Applications
【24h】

Si, SiGe, InP, Ⅲ-N and p-diamond FETs and HBTs for sub-Terahertz and Terahertz Applications

机译:用于亚太赫兹和太赫兹应用的Si,SiGe,InP,Ⅲ-N和p金刚石FET和HBT

获取原文

摘要

InGaAs and GaN HEMTs, InP and SiGe HBTs, and Si MOS demonstrated an efficient detection of terahertz (THz) radiation. The detection mechanism is the rectification of the decaying oscillations of plasma waves. These devices have been also used for homodyne and heterodyne detection, frequency mixing, and for the detection of THz pulses. A high detection speed, a wide dynamic range, and the sensitivity to the sign of the THz electric field make them very attractive for applications in the THz time resolved and time-domain spectroscopy. InP-based and SiGe HBTs have also demonstrated the THz operation. The missing link to revolutionizing the THz electronics is the lack of efficient and powerful THz electronic sources. The Dyakonov-Shur and plasmonic boom instabilities - the proposed mechanisms of generating THz radiation by FETs - require the resonant excitation of the plasma waves, i.e. very short device sizes and high materials and interface quality. The feature sizes of 7 nm and 5 nm of the current and emerging generations of Si CMOS are considerably smaller than the 15 to 30 nm mean free path in Si at room temperature. Ballistic transport in such nanoscale FETs should enable the resonant plasma wave regimes. GaN-based FETs, with extremely high sheet carrier densities and, as a consequence, with higher plasma frequencies, should demonstrate even better performance. The materials properties of p-diamond make it a promising candidate for plasmonic THz sources. New device designs -plasmonic crystals - using multiple resonant sections should improve coupling and increase power.
机译:InGaAs和GaN HEMT,InP和SiGe HBT以及Si MOS证明了对太赫兹(THz)辐射的有效检测。检测机制是对等离子波衰减振荡的整流。这些设备还用于零差和外差检测,频率混合以及太赫兹脉冲的检测。高检测速度,宽动态范围以及对THz电场符号的敏感性,使其非常适合THz时间分辨和时域光谱学中的应用。基于InP和SiGe的HBT也已证明了THz操作。变革太赫兹电子学的缺失环节是缺少高效,强大的太赫兹电子源。 Dyakonov-Shur和等离子臂的不稳定性-提出的通过FET产生THz辐射的机制-需要等离子波的共振激发,即非常短的器件尺寸以及高材料和界面质量。当前和新兴的Si CMOS的7 nm和5 nm的特征尺寸大大小于室温下Si中的15至30 nm的平均自由程。在此类纳米级FET中的弹道传输应能实现共振等离子体波态。具有极高的薄片载流子密度并因此具有更高的等离子体频率的GaN基FET应该表现出更好的性能。对金刚石的材料特性使其成为等离子体太赫兹源的有前途的候选者。使用多个谐振部分的新器件设计-等离子晶体-应该改善耦合并增加功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号