首页> 外文会议>Conference on terahertz, RF, millimeter, and submillimeter-wave technology and applications >Si, SiGe, InP, Ⅲ-N and p-diamond FETs and HBTs for sub-Terahertz and Terahertz Applications
【24h】

Si, SiGe, InP, Ⅲ-N and p-diamond FETs and HBTs for sub-Terahertz and Terahertz Applications

机译:Si,SiGe,InP,Ⅲ-N和P-金刚石FET和Sub-Terahertz和Terahertz应用的HBT

获取原文

摘要

InGaAs and GaN HEMTs, InP and SiGe HBTs, and Si MOS demonstrated an efficient detection of terahertz (THz) radiation. The detection mechanism is the rectification of the decaying oscillations of plasma waves. These devices have been also used for homodyne and heterodyne detection, frequency mixing, and for the detection of THz pulses. A high detection speed, a wide dynamic range, and the sensitivity to the sign of the THz electric field make them very attractive for applications in the THz time resolved and time-domain spectroscopy. InP-based and SiGe HBTs have also demonstrated the THz operation. The missing link to revolutionizing the THz electronics is the lack of efficient and powerful THz electronic sources. The Dyakonov-Shur and plasmonic boom instabilities - the proposed mechanisms of generating THz radiation by FETs - require the resonant excitation of the plasma waves, i.e. very short device sizes and high materials and interface quality. The feature sizes of 7 nm and 5 nm of the current and emerging generations of Si CMOS are considerably smaller than the 15 to 30 nm mean free path in Si at room temperature. Ballistic transport in such nanoscale FETs should enable the resonant plasma wave regimes. GaN-based FETs, with extremely high sheet carrier densities and, as a consequence, with higher plasma frequencies, should demonstrate even better performance. The materials properties of p-diamond make it a promising candidate for plasmonic THz sources. New device designs -plasmonic crystals - using multiple resonant sections should improve coupling and increase power.
机译:Ingaas和GaN Hebts,InP和SiGe Hbts和Si MOS展示了Terahertz(THz)辐射的有效检测。检测机构是等离子体波的衰减振荡的整流。这些装置也用于杂质和外差检测,频率混合和用于检测THz脉冲。高检测速度,宽动态范围,以及THZ电场标志的敏感性使得它们对THz时间分辨和时域光谱的应用非常有吸引力。基于INP和SIGE HBTS还证明了THZ操作。撕毁THZ电子产品的缺失链接是缺乏高效和强大的THZ电子来源。 Dyakonov-Shur和等离子体动臂稳定性 - 通过FETS产生THz辐射的所提出的机制 - 需要等离子体波的共振激发,即非常短的装置尺寸和高材料和界面质量。 7nm和5nm的Si CMO的7nm和5nm的特征尺寸显着小于室温下Si中的15至30nm平均自由路径。这种纳米级FET中的弹道传输应使得能够使谐振等离子体波动制度能够实现。基于GaN的FET,具有极高的纸张载体密度,因此具有更高的等离子体频率,应表现出更好的性能。 P-Diamond的材料特性使其成为等离离子体THZ来源的有希望的候选者。新器件设计 - 胶质晶体 - 使用多个谐振部分应提高耦合并增加功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号