首页> 外文会议>International Conference on Inductive Logic Programming >MMRF for Proteome Annotation Applied to Human Protein Disease Prediction
【24h】

MMRF for Proteome Annotation Applied to Human Protein Disease Prediction

机译:MMRF用于应用于人蛋白质疾病预测的蛋白质组注释

获取原文

摘要

Biological processes where every gene and protein participates is an essential knowledge for designing disease treatments. Nowadays, these annotations are still unknown for many genes and proteins. Since making annotations from in-vivo experiments is costly, computational predictors are needed for different kinds of annotation such as metabolic pathway, interaction network, protein family, tissue, disease and so on. Biological data has an intrinsic relational structure, including genes and proteins, which can be grouped by many criteria. This hinders the possibility of finding good hypotheses when attribute-value representation is used. Hence, we propose the generic Modular Multi-Relational Framework (MMRF) to predict different kinds of gene and protein annotation using Relational Data Mining (RDM). The specific MMRF application to annotate human protein with diseases verifies that group knowledge (mainly protein-protein interaction pairs) improves the prediction, particularly doubling the area under the precision-recall curve.
机译:生物过程,每一个基因和蛋白质的参与是设计疾病治疗的基本知识。如今,这些注释仍然是许多基因和蛋白质未知。由于从被检体内实验制作的注释是昂贵的,需要为不同类型的注释的如代谢途径,相互作用网络,蛋白质家族,组织,疾病等的计算预测。生物数据具有固有的关系结构,包括基因和蛋白质,这可以通过许多标准进行分组。这阻碍时使用的属性值表示找到好的假设的可能性。因此,我们提出了通用的模块化多关系框架(MMRF)来预测不同类型的使用关系数据挖掘(RDM)基因和蛋白的注释。具体MMRF应用来注释的人蛋白与疾病验证该组知识(主要是蛋白质 - 蛋白质相互作用对)改善了预测,特别是加倍精度召回曲线下的面积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号