首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations
【24h】

ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations

机译:ALN薄膜作为III–V光子学器件中的散热器,第2部分:模拟

获取原文
获取外文期刊封面目录资料

摘要

In the paper, we aim to solve the thermal problems appearing in integrated silicon photonics by using high thermal conductivity Aluminium Nitride (ALN) as a thermal spreading layer located around the ridge of a hybrid III-V laser on silicon in comparison to the existing encapsulation material benzocyclobutene (BCB). Here, to facilitate the design of reliable hybrid semiconductor lasers, we first develop and implement a multiphysics electro-thermo-mechanical model within a finite element environment COMSOL. A phenomenological model of laser operation is used to numerically capture all the thermal and electrical characteristics of the lasers. In terms of the hybrid devices, the simulated thermal resistance agrees well with our device measurements presented in Part 1 of this work. We also demonstrate that the use of the ALN heat spreader can significantly reduce the thermal resistance. Moreover, a linear elastic model is employed for a mechanical analysis of the entire laser structure. The maximum allowable stress is estimated using the Christensen criterion. We find that the process-dependent residual stress dictates the device stress field. In the current design, the BCB encapsulation layer is at risk of failure around the InP waveguide. For AlN spreaders, lower film processing temperatures are key to reduce the stress in the deposited film. We further perform a parametric study on Tref to determine the maximum allowable deposition temperature of AlN/BCB. The simulations suggest that Tref should not exceed 59 °C and 69 °C for ALN and BCB respectively to avoid mechanical failure in the devices.
机译:在本文中,我们旨在通过使用高导热率的氮化铝(ALN)作为热扩散层来解决集成硅光子学中出现的热问题,该热扩散层位于硅上混合III-V激光器的脊周围,与现有的封装相比物质苯并环丁烯(BCB)。在这里,为了方便可靠的混合半导体激光器的设计,我们首先在有限元环境COMSOL中开发并实现了多物理场电热机械模型。激光操作的现象模型用于数值捕获激光的所有热和电特性。在混合设备方面,模拟的热阻与本文第1部分中介绍的设备测量非常吻合。我们还证明了使用ALN散热器可以显着降低热阻。此外,线性弹性模型用于整个激光器结构的机械分析。使用克里斯滕森准则估算最大允许应力。我们发现,与过程有关的残余应力决定了器件的应力场。在当前设计中,BCB封装层存在InP波导周围发生故障的风险。对于AlN扩散器,降低膜的加工温度是降低沉积膜应力的关键。我们进一步对Tref进行参数研究,以确定AlN / BCB的最大允许沉积温度。仿真表明,ALN和BCB的Tref分别不应超过59°C和69°C,以避免器件发生机械故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号