首页> 外文会议>International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves >AIGaN/GaN MICROWAVE TRANSISTORS FOR WIRELESS COMMUNICATIONSYSTEMS AND ADVANCED NANOSTRUCTURES FOR HIGH-SPEED SENSORAPPLICATIONS
【24h】

AIGaN/GaN MICROWAVE TRANSISTORS FOR WIRELESS COMMUNICATIONSYSTEMS AND ADVANCED NANOSTRUCTURES FOR HIGH-SPEED SENSORAPPLICATIONS

机译:用于无线通讯系统的AIGAN / GAN微波晶体管和用于高速传感器的先进纳米结构

获取原文

摘要

The AIGaN/GaN heterostructures are a relatively young class of materials, which have already found their way into many -commercial applications and established themselves as key devices for the next generation of wireless communication systems [1] GaN-based material systems possess fundamental properties that allow high-power operation in the millimeter-wave range. The piezoelectric effect is three times stronger in nitride-based materials than in GaAs, resulting in the formation of high sheet electron density (5x10~(13)cm~(-2)) at the AIGaN/GaN interface without any intentional doping. To improve the high-frequency (HF) performance, transistor gate length and barrier layer thickness should be decreased. However, this usually results in a decreasing density of the two-dimensional (2D) gas. One innovative approach for a high electron mobility transistor (HEMT) design was presented by M.Higashiwaki [2], who proposed the use of a thin and high-Alcontent barrier layer to keep sheet channel charge concentration high enough with a decreasing barrier layer thickness to reach high-power operation with a current-gain cutoff frequency of 152 GHz. Recently, novel processes for recessed 70-nm gate-length AIGaN/GaN HEMTs for gate-footprint definitions [3] were reported. The highest reported value today for any nitride transistor power-gain cutoff frequency is 300 GHz and it was achieved by combining a low-damage gate-recess technology and recessed source/drain ohmic contacts to enable minimum short channel effects and very low parasitic resistance [4]. However, material quality still limits the HF performance due to a lack of a suitable lattice-matched substrate. Therefore, epitaxial films, contain a high density of dislocations. The substrates of choice are apphire, silicon carbide and silicon. In spite of considerably improved thermal removing properties, the SiC substrate is still very expensive and Si substrates still demonstrate a comparatively high level of leakage currents. The latter results in decreasing output power densities from 12 W/mm (sapphire substrate) [5] to 5.1 W/mm (Si substrate) [6].
机译:Aigan / GaN异质结构是一种相对较年轻的材料,已经发现它们进入许多商业应用程序,并将自己建立为下一代无线通信系统的关键装置[1]基于GaN的材料系统具有基本属性允许毫米波范围内的大功率操作。压电效应在氮化物基材料中比在GaAs中更强三倍,导致在AIGAN / GAN界面处形成高板电子密度(5×10〜(13)cm〜(-2)),而无需任何有意的掺杂。为了提高高频(HF)性能,应降低晶体管栅极长度和阻挡层厚度。然而,这通常导致二维(2D)气体的密度降低。通过M.higashiwaki [2]提出了一种高电子迁移晶体管(HEMT)设计的一种创新方法,他提出了使用薄型和高级阻挡层,以使纸张通道电荷浓度保持足够高的阻挡层厚度通过电流增益截止频率为152 GHz的高功率操作。近来,报道了嵌入的70-nm栅极长度Aigan / GaN Hemts的新方法进行了报道了用于栅极足迹定义[3]。今天的最高报告的价值对于任何氮化物晶体管功率增益截止频率为300 GHz,通过组合低损伤的栅极 - 凹槽技术和嵌入源/漏极欧姆触点来实现,以实现最小短信效应和非常低的寄生电阻[ 4]。然而,由于缺乏合适的晶格匹配的基材,材料质量仍然限制了HF性能。因此,外延薄膜含有高密度的脱位。选择的基板是特殊的,碳化硅和硅。尽管具有相当大的热除去性能,但是SiC基板仍然非常昂贵,并且Si基板仍然展示了相对高的泄漏电流。后者导致从12W / mm(蓝宝石衬底)[5]至5.1W / mm(Si衬底)[6]的输出功率密度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号