首页> 外文会议>ASME annual dynamic systems and control conference >VOLTAGE RESPONSE FOR PARAMETRICALLY ACTUATED MEMS CANTILEVER BEAM USING HOMOTOPY ANALYSIS METHOD AND METHOD OF MULTIPLE SCALES
【24h】

VOLTAGE RESPONSE FOR PARAMETRICALLY ACTUATED MEMS CANTILEVER BEAM USING HOMOTOPY ANALYSIS METHOD AND METHOD OF MULTIPLE SCALES

机译:使用同型分析方法和多种尺度的方法对参数致动MEMS悬臂梁的电压响应

获取原文

摘要

The purpose of this paper is to investigate the nonlinear dynamics governing the behavior of electrostatically actuated micro electro mechanical systems (MEMS) cantilever undergoing parametric resonance. The MEMS consists of a cantilever parallel to a ground plate. The beam is actuated via an A/C voltage with excitation frequency near first natural frequency of the cantilever. The model includes damping, electrostatic, and Casimir (or van der Waals) forces. The electrostatic force is modeled to include the fringe effect. The amplitude-voltage response of the parametric resonance and the effects of varying the magnitudes of the fringe, Casimir (or Van der Waals), and damping forces along with varying the detuning parameter are reported. The response is obtained using two different methods, namely the method of multiple scales (MMS), and the homotopy analysis method (HAM). In this study approximations up to a 2nd order HAM are used. HAM is a deformation technique that begins with an initial guess and continuously deforms it to the exact answer. For the 1st Order HAM, a softening effect is reported. The 1st Order HAM matches the MMS results in low amplitude and begins to soften and deviate away from the MMS solution in higher amplitudes. For the 2nd Order HAM deformation the softening effect is slightly more pronounced with a slightly lower prediction of the maximum deflection of the cantilever tip. For the 2nd order deformation solution the stable branch of the amplitude-voltage response obtained by the HAM shifts leftward from the MMS solution with the unstable branches between the two methods continue to agree in low amplitudes and deviate in high amplitudes. As a remark, the higher order HAM solutions are obtained symbolically with the software Mathematica and numerically ran with the software Matlab.
机译:本文的目的是研究控制静电致动的微电器系统(MEMS)悬臂的行为的非线性动力学。 MEMS由平行于地板的悬臂组成。通过悬臂的第一自然频率附近的激发频率,通过A / C电压致动梁。该模型包括阻尼,静电和卡西米尔(或van der Waals)力。静电力模拟以包括条纹效果。报道了参数谐振的幅度电压响应和改变条纹,卡西米尔(或范德华)的幅度,以及阻尼力以及改变静谐参数的效果。使用两种不同方法获得响应,即多个尺度(MMS)的方法和同型分析方法(HAM)。在本研究中,使用近似到2nd阶火腿的近似。火腿是一种变形技术,从初始猜测开始,并将其连续地使其变形为确切的答案。对于第一个命令火腿,报告了软化效果。第1次命令火腿匹配MMS导致低幅度,并开始软化并远离较高幅度的MMS解决方案。对于第二阶火腿变形,软化效果稍微明显,悬臂尖端的最大偏转预测略微较低。对于第二阶变形溶液,通过火腿获得的幅度电压响应的稳定分支从MMS溶液向左移位,在两种方法之间的不稳定分支继续以低幅度达成一致并偏离高幅度。作为一项备注,象征性地与软件Mathematica获得象征性的较高阶火腿解决方案,并使用软件MATLAB进行数值运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号