首页> 外文会议>ASME annual dynamic systems and control conference >VOLTAGE RESPONSE FOR PARAMETRICALLY ACTUATED MEMS CANTILEVER BEAM USING HOMOTOPY ANALYSIS METHOD AND METHOD OF MULTIPLE SCALES
【24h】

VOLTAGE RESPONSE FOR PARAMETRICALLY ACTUATED MEMS CANTILEVER BEAM USING HOMOTOPY ANALYSIS METHOD AND METHOD OF MULTIPLE SCALES

机译:均质分析方法和多尺度方法的参量MEMS悬臂梁电压响应

获取原文

摘要

The purpose of this paper is to investigate the nonlinear dynamics governing the behavior of electrostatically actuated micro electro mechanical systems (MEMS) cantilever undergoing parametric resonance. The MEMS consists of a cantilever parallel to a ground plate. The beam is actuated via an A/C voltage with excitation frequency near first natural frequency of the cantilever. The model includes damping, electrostatic, and Casimir (or van der Waals) forces. The electrostatic force is modeled to include the fringe effect. The amplitude-voltage response of the parametric resonance and the effects of varying the magnitudes of the fringe, Casimir (or Van der Waals), and damping forces along with varying the detuning parameter are reported. The response is obtained using two different methods, namely the method of multiple scales (MMS), and the homotopy analysis method (HAM). In this study approximations up to a 2nd order HAM are used. HAM is a deformation technique that begins with an initial guess and continuously deforms it to the exact answer. For the 1st Order HAM, a softening effect is reported. The 1st Order HAM matches the MMS results in low amplitude and begins to soften and deviate away from the MMS solution in higher amplitudes. For the 2nd Order HAM deformation the softening effect is slightly more pronounced with a slightly lower prediction of the maximum deflection of the cantilever tip. For the 2nd order deformation solution the stable branch of the amplitude-voltage response obtained by the HAM shifts leftward from the MMS solution with the unstable branches between the two methods continue to agree in low amplitudes and deviate in high amplitudes. As a remark, the higher order HAM solutions are obtained symbolically with the software Mathematica and numerically ran with the software Matlab.
机译:本文的目的是研究控制受参数共振的静电驱动微机电系统(MEMS)悬臂行为的非线性动力学。 MEMS由平行于接地板的悬臂组成。通过具有接近悬臂的第一固有频率的激发频率的A / C电压来致动束。该模型包括阻尼力,静电力和卡西米尔(或范德华力)力。对静电力进行建模以包括边缘效应。报告了参数共振的幅度-电压响应以及改变条纹,卡西米尔(或范德华)和阻尼力以及改变失谐参数的幅度的影响。使用两种不同的方法获得响应,即多尺度方法(MMS)和同型分析方法(HAM)。在本研究中,使用了近似二阶HAM的近似值。 HAM是一种变形技术,从最初的猜测开始,然后不断将其变形为确切的答案。对于一阶HAM,据报道其具有软化作用。一阶HAM与MMS结果相匹配,导致幅度较低,并在较高幅度时开始软化并偏离MMS解决方案。对于二阶HAM变形,软化效果在悬臂尖端最大挠度的预测值略低的情况下更为明显。对于二阶变形解决方案,由HAM从MMS解决方案向左移动而获得的振幅-电压响应的稳定分支,而两种方法之间的不稳定分支在低振幅处继续一致,而在高振幅处发生偏离。值得一提的是,高阶HAM解可以通过Mathematica软件象征性地获得,并可以通过Matlab软件进行数字化运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号