首页> 外文期刊>Computers & mathematics with applications >Application of the homotopy analysis method to determine the analytical limit state functions and reliability index for large deflection of a cantilever beam subjected to static co-planar loading
【24h】

Application of the homotopy analysis method to determine the analytical limit state functions and reliability index for large deflection of a cantilever beam subjected to static co-planar loading

机译:同质分析方法在确定静共面载荷作用下悬臂梁大挠度的分析极限状态函数和可靠度指标中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the Homotopy Analysis Method (HAM) is applied to obtain the limit state function, probability of failure and reliability index based on all stochastic and deterministic variables for a cantilever beam subjected to co-planar loading for the first time. First, it is established that a few iterations in the series expansion are sufficient to obtain highly accurate results and a substantial convergence region. After showing the effectiveness of HAM, two limit state functions are introduced as the maximum deflection in the y direction and maximum allowable stress, respectively. Then the first order reliability method (FORM) is employed to obtain reliability index, and omission sensitivity factor analytically. It is shown that HAM is a promising tool to obtain limit state function, probability of failure and reliability index analytically for nonlinear problems. Finally, a sensitivity analysis is done to show that which parameters could be considered deterministic or stochastic variables.
机译:本文采用同伦分析方法(HAM),基于悬臂梁首次受到共面载荷的所有随机和确定性变量,获取极限状态函数,失效概率和可靠性指标。首先,确定了级数展开中的几次迭代足以获得高度准确的结果和足够大的收敛区域。在显示了HAM的有效性之后,引入了两个极限状态函数,分别是y方向上的最大挠度和最大允许应力。然后采用一阶可靠性方法(FORM)来获得可靠性指标,并分析得出遗漏灵敏度因子。结果表明,HAM是一种有前途的工具,可以分析非线性问题,获得极限状态函数,失效概率和可靠性指标。最后,进行敏感性分析以表明哪些参数可以被视为确定性或随机变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号