首页> 外文会议>International symposium on microelectronics >DEVELOPMENT OF AN ULTRA THIN DIE-TO-WAFER FLIP CHIP STACKING PROCESS FOR 2.5D INTEGRATION
【24h】

DEVELOPMENT OF AN ULTRA THIN DIE-TO-WAFER FLIP CHIP STACKING PROCESS FOR 2.5D INTEGRATION

机译:用于2.5D集成的超薄模片倒装芯片堆叠工艺的开发

获取原文

摘要

3D integration relying on novel vertical interconnectiontechnologies opens the gate to powerful microelectronicsystems in ultra-thin packages answering the demand of themobile market.Among these, die-to-wafer stacking is a key enablingtechnology for 2.5D as well as for 3D with technologicalchallenges driven by, in one hand, the increase of the diesurface and the number of I/Os and, on the other hand, thereduction of the vertical dimensions. In our integration schemewe have achieved flip chip stacking (or Face to Face) of 35μm ultra-thin dies with low stand-off (< 15 μm) copper microbumpsand tin-silver-copper solders (SAC).Ultra-thin dies are prepared using dicing before grinding(DBG) technique. After DBG, plasma stress release process isapplied to the backside of the singulated chips.Copper μbump technology is challenging with this verylow profile stacking since the current flip chip process is nolonger adapted to this geometry and that the die flatnesstolerance become very critical to obtain a high soldering yield.Process improvements have been achieved on the copperpillar fabrication itself with several metallurgy stackconfigurations as well as new processes using damascenetechniques.Furthermore, innovative technologies have been deployedon the pick and place and collective soldering processes.Intermetallic formation during reflow process is achievedthrough transient liquid phase (TLP) reaction leading tothorough consumption of the tin layer and to the formation ofCu_6Sn_5 and Cu_3Sn compounds.Capillary underfill is finally successfully applied in thenarrow die-to-wafer gap by jetting technique.After optimization, electrical tests show a very high yieldclose to 100% over a representative number of fully populatedwafers.Reliability tests have also been carried out at wafer levelexhibiting no significant resistance increase or yield loss over1000 thermal cycles between -40 and +125°C.
机译:依靠新颖的垂直互连的3D集成 技术为强大的微电子技术打开了大门 超薄包装的系统满足了 移动市场。 其中,晶片对晶片的堆叠是关键 适用于2.5D和3D技术的技术 一方面是死的增加所带来的挑战 表面和I / O的数量,另一方面, 减小垂直尺寸。在我们的整合方案中 我们已经实现了35的倒装芯片堆叠(或面对面) μm超薄裸片,具有低间距(<15μm)铜微凸点 和锡银铜焊料(SAC)。 超薄模具在磨削前使用切割来制备 (DBG)技术。 DBG之后,等离子体应力释放过程为 应用于单颗芯片的背面。 铜微凸点技术对此具有挑战性 由于当前的倒装芯片工艺尚不成熟,因此可以实现低剖面堆叠 不再适应这种几何形状,并且模具平整度 公差对于获得高焊接良率变得非常关键。 在铜上已经实现了工艺改进 几个冶金堆栈的支柱制造本身 使用镶嵌的配置以及新流程 技术。 此外,已经部署了创新技术 在挑选和集体焊接过程中。 实现了回流过程中的金属间形成 通过瞬时液相(TLP)反应导致 彻底消耗锡层并形成 Cu_6Sn_5和Cu_3Sn化合物。 毛细管底部填充技术终于成功地应用于了 通过喷射技术缩小了芯片到晶圆的间隙。 经过优化,电气测试显示出很高的良率 完全代表人数的近100% 威化饼。 还已经在晶圆级进行了可靠性测试 表现出没有明显的电阻增加或产量损失超过 在-40至+ 125°C之间进行1000次热循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号