首页> 外文会议>International Symposium on Quality Electronic Design >Comparison of electrical, optical and plasmonic on-chip interconnects based on delay and energy considerations
【24h】

Comparison of electrical, optical and plasmonic on-chip interconnects based on delay and energy considerations

机译:基于延迟和能量考虑的电气,光学和等离子体片互连的比较

获取原文

摘要

With continued shrinking of device dimensions on chip, major advancements in intra chip interconnect technology are required to minimize delay, energy dissipation and cross-talk. In this paper, two alternative on-chip interconnect technology options are studied, namely the plasmonic and optical interconnects. It is shown that plasmonic interconnects can be 3 orders of magnitude faster than minimum sized CMOS interconnects at the 2016 technology node. However, their propagation length is limited to few microns and hence they can be used only as short local interconnects. Energy per bit of plasmonic interconnects is shot-noise limited and it increases exponentially with interconnect length. Cross-over length beyond which plasmonic interconnects become less energy efficient compared to CMOS interconnects is calculated. It is found to be 10 μm for Ag cylindrical plasmonic waveguides of 100-nm diameter embedded in SiO2 dielectric at free-space wavelength of 1μm. Although plasmonic interconnects show potential as future local interconnects, plasmonic switches are needed for their implementation at the GSI(GigaScale Integration) level. Without plasmonic switches the energy and circuit overhead associated with signal conversion will be prohibitive. Optical interconnects, on the other hand, are limited to be used only at the global level due to the fundamental limitations on their size. Although the native interconnect delay of optical interconnects is quite less, their bandwidth density is limited due to the fundamental limitations on the minimum pitch. Wavelength division multiplexing is identified as one of the solutions towards increasing the bandwidth density of optical interconnects. Critical length beyond which optical interconnects offer higher bandwidth compared to copper interconnects is identified to be equal to the chip edge in absence of WDM. In presence of 4 channel WDM, the critical length improves to 0.4cm. Critical length assessme- t based on energy comparison with CMOS interconnect is evaluated to be 0.15cm.
机译:随着芯片上的设备尺寸的持续收缩,需要芯片内互连技术的主要进步,以最大限度地减少延迟,能量耗散和串扰。在本文中,研究了两种替代的片上互连技术选项,即等离子体和光学互连。结果表明,比2016技术节点的最小尺寸CMOS互连,等级互连可以是3个峰值。然而,它们的传播长度限制为几微米,因此它们只能用作短暂的本地互连。每个等离子体互连的能量是射击噪声限制,并且它随着互连长度呈指数增加。与CMOS互连相比,超越长度超出哪个等离子体互连变得较低的节能。它被发现为10μ m f for Ag圆柱形等离子体波导,其直径为100-nm直径,嵌入在1&#x03bc的自由空间波长下的SiO 2 电介质中。虽然等离子体互连显示出作为未来本地互连的潜力,但需要在GSI(千宫集成)水平上实现等离子体开关。没有等离子体开关,与信号转换相关的能量和电路开销将是禁止的。另一方面,光学互连仅限于由于其尺寸的基本限制而仅在全球层面上使用。尽管光学互连的天然互连延迟非常少,但由于对最小间距的基本限制,它们的带宽密度受到限制。波分复用被识别为朝向增加光学互连的带宽密度的解决方案之一。与铜互连相比,光学互连提供更高的带宽的临界长度被识别为在不存在WDM的情况下等于芯片边缘。在4个通道WDM存在下,临界长度提高到0.4cm。基于与CMOS互连的能量比较的临界长度评估评估为0.15cm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号