首页> 外文会议>International Conference on Electric Power and Energy Conversion Systems >Very short term Solar Irradiance Prediction for a microgrid system in Taiwan based on Hybrid of Support Vector Regression and Grey Theory
【24h】

Very short term Solar Irradiance Prediction for a microgrid system in Taiwan based on Hybrid of Support Vector Regression and Grey Theory

机译:基于支持向量回归和灰色理论的台湾微电网系统的短期太阳辐照度预测

获取原文

摘要

In recent years, energy crisis becomes a global issue. The use of renewable energy in electricity generation has increased significantly. Natural resource such as solar energy is available in large amount, but it is unpredictable. Solar Irradiance Prediction (SIP) is very important to estimate Photovoltaic (PV) power generation. The generated power of PV will affect power dispatch, scheduling, or even the stability of a microgrid system. This paper proposes to use the Hybrid of Support Vector Regression (SVR) and Grey Theory Models for very short term (VST) SIP (in the range of minutes). The proposed model has been validated with the actual measured data and will be implemented in the Energy Management System (EMS) of a microgrid system in Taiwan. Comparing to the models based on either the Grey theory or the SVR, the proposed method yields higher accuracy.
机译:近年来,能源危机成为一个全球问题。使用可再生能源在发电中的使用显着增加。太阳能等自然资源大量可用,但这是不可预测的。太阳辐照度预测(SIP)对于估计光伏(PV)发电非常重要。 PV的产生功率将影响微电网系统的功率调度,调度甚至稳定性。本文提出使用支持向量回归(SVR)和灰色理论模型的杂交物,非常短期(VST)SIP(在分钟的范围内)。所提出的模型已通过实际测量数据验证,并将在台湾微电网系统的能量管理系统(EMS)中实施。与基于灰色理论或SVR的模型相比,该方法的准确性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号