首页> 外文OA文献 >Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms
【2h】

Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms

机译:通过混合支持向量回归和长短短期记忆算法的短期负荷预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Short-Term Load Forecasting (STLF) is the most appropriate type of forecasting for both electricity consumers and generators. In this paper, STLF in a Microgrid (MG) is performed via the hybrid applications of machine learning. The proposed model is a modified Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) called SVR-LSTM. In order to forecast the load, the proposed method is applied to the data related to a rural MG in Africa. Factors influencing the MG load, such as various household types and commercial entities, are selected as input variables and load profiles as target variables. Identifying the behavioral patterns of input variables as well as modeling their behavior in short-term periods of time are the major capabilities of the hybrid SVR-LSTM model. To present the efficiency of the suggested method, the conventional SVR and LSTM models are also applied to the used data. The results of the load forecasts by each network are evaluated using various statistical performance metrics. The obtained results show that the SVR-LSTM model with the highest correlation coefficient, i.e., 0.9901, is able to provide better results than SVR and LSTM, which have the values of 0.9770 and 0.9809, respectively. Finally, the results are compared with the results of other studies in this field, which continued to emphasize the superiority of the SVR-LSTM model.
机译:短期负荷预测(STLF)是对电力消费者和发电机的最合适类型的预测。在本文中,通过机器学习的混合应用进行微电网中的STLF。所提出的模型是一种修改的支持向量回归(SVR)和称为SVR-LSTM的长短期存储器(LSTM)。为了预测负载,所提出的方法适用于非洲农村镁的数据。选择影响MG负载的因素,例如各种家庭类型和商业实体,作为输入变量和负载配置文件作为目标变量。识别输入变量的行为模式以及在短期时间段内建模其行为是混合SVR-LSTM模型的主要能力。为了提出建议方法的效率,传统的SVR和LSTM模型也应用于所使用的数据。使用各种统计性能度量评估每个网络的负载预测结果。所得结果表明,具有最高相关系数的SVR-LSTM模型,即0.9901,能够提供比SVR和LSTM的更好的结果,它们分别具有0.9770和0.9809的值。最后,将结果与该领域的其他研究结果进行了比较,这继续强调SVR-LSTM模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号