首页> 外文期刊>Mathematical Problems in Engineering >Very Short-Term Load Forecasting Using Hybrid Algebraic Prediction and Support Vector Regression
【24h】

Very Short-Term Load Forecasting Using Hybrid Algebraic Prediction and Support Vector Regression

机译:使用混合代数预测和支持向量回归的非常短期负荷预测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a model for very short-term load forecasting (VSTLF) based on algebraic prediction (AP) using a modified concept of the Hankel rank of a sequence. Moreover, AP is coupled with support vector regression (SVR) to accommodate weather forecast parameters for improved accuracy of a longer prediction horizon; thus, a hybrid model is also proposed. To increase system reliability during peak hours, this prediction model also aims to provide more accurate peak-loading conditions when considerable changes in temperature and humidity happen. The objective of going hybrid is to estimate an increase or decrease on the expected peak load demand by presenting the total MW per Celsius degree change (MW/C degrees) as criterion for providing a warning signal to system operators to prepare necessary storage facilities and sufficient reserve capacities if urgently needed by the system. The prediction model is applied using actual 2014 load demand of mainland South Korea during the summer months of July to September to demonstrate the performance of the proposed prediction model.
机译:本文提出了一个基于代数预测(AP)的超短期负荷预测(VSTLF)模型,该模型使用了序列的汉克等级的改进概念。此外,AP与支持向量回归(SVR)结合以适应天气预报参数,从而提高了较长预测范围的准确性;因此,还提出了一种混合模型。为了提高高峰时段的系统可靠性,该预测模型还旨在在温度和湿度发生较大变化时提供更准确的峰值负载条件。进行混合动力的目的是通过将每摄氏度变化的总MW表示为向系统操作员提供警告信号以准备必要的存储设施并提供足够信号的标准,来估计预期峰值负载需求的增加或减少如果系统迫切需要保留容量。该预测模型是利用7月至9月夏季韩国大陆的2014年实际负荷需求应用的,以证明所提出的预测模型的性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|8298531.1-8298531.9|共9页
  • 作者单位

    Seoul Natl Univ Sci & Technol, Dept Elect & Informat Engn, Seoul 01811, South Korea;

    Seoul Natl Univ Sci & Technol, Dept Elect & Informat Engn, Seoul 01811, South Korea;

    Seoul Natl Univ Sci & Technol, Dept Elect & Informat Engn, Seoul 01811, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号