首页> 外文会议>Electronic System-Integration Technology Conference >Numerical analysis of thermal effects in SOI MOSFET Flip-Chip packages: Multi-scale studies on isolated transistors and global simulations
【24h】

Numerical analysis of thermal effects in SOI MOSFET Flip-Chip packages: Multi-scale studies on isolated transistors and global simulations

机译:SOI MOSFET倒装芯片封装中热效应的数值分析:隔离晶体管和全局模拟的多尺度研究

获取原文

摘要

We present numerical simulations of thermal phenomena in SOI MOSFETs flip-chip packages. We consider the effects of package environment on isolated transistors performing multi-scale Finite Elements thermal simulations. Furthermore, we perform a complete thermal analysis of a microchip in a flip-chip package. We build a robust Finite Elements model of a typical ten-level Back End of Line (BEoL) in order to evaluate the effects that metal interconnects of the BEoL have on local and global temperature elevation. In order to perform a multi-scale simulation, we compute equivalent thermal properties for composite components that we apply to the macroscopic model for obtaining coherent results. Homogenized values show that the conductivity of the BEoL is one order of magnitude higher in the lateral direction than in the vertical one, with values ranging between 50 - 100 W/mK laterally and between 1 - 5 W/mK in the vertical direction. Therefore, the spreading of heat takes place mainly laterally through metal lines. Results in the microscopic model confirm that heat flowing towards the heat sink passes mainly through metal interconnects. The hot spot temperature elevation is around 90 K for a transistor with gate length L of 30 nm and active width W of 0.5 μm, value that is lower than for the hot spot at wafer level in the same transistor. We analyze the impact of the density of metal interconnects on temperature elevation, deducing relative variations of up to 100% on the temperature of the first metal level. Macroscopic inspection of a typical 28 nm CMOS Flip-Chip product shows that copper pillars create a path for heat transfer, resulting in hot spots on the top of the Ball Grid Array (BGA) and cold areas at active level. The temperature difference at chip level is around 12 K, with values depending on the distribution of copper pillars and the thickness of the Silicon bulk. We analyze the impact of a variation in the pitch between copper pillars on the maximum temperature, verifying that a higher pitch causes a variation of up to 8 K on maximum temperature in extreme cases. We propose an accurate compact model that predicts the impact of copper pillars placement based on approximation of equivalent thermal properties. Finally, we deduce that, independently of the molding compound presence, increasing the Silicon bulk thickness causes a homogenization in the temperature map at chip level, as the temperature difference is around 12 K for a bulk of 110 μm decreasing to 4 K for a bulk of 770 μm.
机译:我们在SOI MOSFET倒装芯片封装中呈现了热现象的数值模拟。我们考虑包环境对执行多尺度有限元热模拟的隔离晶体管的影响。此外,我们在倒装芯片封装中对微芯片进行了完整的热分析。我们构建一个典型的十级后端(BEOL)的强大有限元模型,以评估BEOL对局部和全球温度高度的金属互连的影响。为了执行多尺度仿真,我们将应用于宏观模型的复合组件计算等效热属性以获得相干结果。均匀化值表明,BEOL的电导率在横向方向上高于垂直方向上的一个阶数,其值在横向和垂直方向上横向和1-5W / mk之间的值。因此,热量的散布主要通过金属线横向地进行。显微镜模型的结果确认,流动朝向散热器的热量主要通过金属互连。对于具有30nm的栅极长度的晶体管,热点温度升高约为90 k,并且有效宽度W为0.5μm,值低于同一晶体管的晶片水平下的热点。我们分析了金属密度对温度升高的影响,使得在第一金属水平的温度上达到高达100%的相对变化。典型28nm CMOS倒装芯片产品的宏观检查表明,铜柱造成传热的路径,导致球栅阵列(BGA)顶部的热点,处于活动水平的寒冷区域。芯片水平的温差约为12 k,根据铜柱的分布和硅散装的厚度,具有值。我们分析了铜柱之间的间距变化对最高温度的影响,验证较高的间距导致最高8 k的变化在极端情况下最高温度。我们提出了一种精确的紧凑型模型,可根据等效热特性的近似来预测铜柱放置的影响。最后,我们推断出独立于模塑复合的存在,增加硅块厚度在芯片水平下的温度图中导致均质化,因为温度差约为12k,其中110μm的体积减小到4 k 770μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号