首页> 外文会议>Modelling and Simulation >MODELLING OF HEMODYNAMIC STRESS EFFECTS ON RUPTURE MECHANICS AND FIBROUS CAP COLLAGEN ARCHITECTURE OF ATHEROSCLEROTIC PLAQUES
【24h】

MODELLING OF HEMODYNAMIC STRESS EFFECTS ON RUPTURE MECHANICS AND FIBROUS CAP COLLAGEN ARCHITECTURE OF ATHEROSCLEROTIC PLAQUES

机译:血流动力学应力对动脉粥样硬化斑块断裂机制和纤维帽胶原结构的影响

获取原文

摘要

Cardiovascular plaque rupture in atherosclerosis has been associated extensively with Acute Myocardial Infarctions, a leading cause of death. The mechanics and progression of plaque rupture are not yet fully understood. A protective fibrous cap made of collagen fibers and smooth muscle cells covers the plaque's necrotic core. These fibers provide strength and elasticity to the cap tissue as they realign over time to the prevalent tensile stress orientations as an efficient method to optimize strength without increasing weight and metabolic costs [1]. Fluid structure interaction simulations of normal hemodynamic conditions in a stenosed artery were performed to evaluate stress distribution and orientation within the plaque's main constituents, and to predict the cap's collagen fiber architecture and subsequently its vulnerability. The results show that the principal stress orientations gradually shift from circumferential at the non-stenosed sections of the artery to longitudinal at the peak of the stenosis. This gradual shift can be seen in the collagen architecture of actual histopathological studies of diseased vessels. The higher magnitude stress zones also indicate where plaque disruption may initiate and how fissure propagation can occur. Based on these results we could hypothesize that the rupture mechanics can be treated as a biocomposite matrix failure as fissuring seems to run parallel to the collagen fibers.
机译:动脉粥样硬化中的血管斑块破裂已与急性心肌梗塞(广泛的死亡原因)广泛相关。斑块破裂的机制和进展尚未完全了解。由胶原纤维和平滑肌细胞制成的保护性纤维帽覆盖菌斑的坏死核心。这些纤维随着时间的推移重新对准普遍的拉伸应力方向,从而为帽盖组织提供强度和弹性,这是一种在不增加重量和代谢成本的情况下优化强度的有效方法[1]。在狭窄的动脉中进行正常血液动力学状况的流体结构相互作用模拟,以评估斑块主要成分内的应力分布和方向,并预测帽的胶原纤维结构及其脆弱性。结果表明,主应力方向从动脉非狭窄部分的周向逐渐转移到狭窄峰值处的纵向。在患病血管的实际组织病理学研究的胶原蛋白结构中可以看到这种逐渐转变。较高强度的应力区还指示了可能在哪些位置引发噬菌斑破裂以及如何发生裂缝传播。根据这些结果,我们可以假设破裂机制可以看作是生物复合材料基质破裂,因为裂缝似乎与胶原纤维平行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号