首页> 外文会议>Mathematical models and methods in applied sciences >Keynote Lecture 1 Solving Initial Value Problems of Multivariable Parabolic Systems via Expectation Values:Probabilistic Evolution, Exactness and Approximants
【24h】

Keynote Lecture 1 Solving Initial Value Problems of Multivariable Parabolic Systems via Expectation Values:Probabilistic Evolution, Exactness and Approximants

机译:主题演讲1:通过期望值解决多元抛物系统的初值问题:概率演化,精确性和近似

获取原文
获取原文并翻译 | 示例

摘要

There is an abundancy of systems characterized by parabolic PDEs in science and engineering, especially in chemistry and physics. These systems have a scalar variable, we generally call time, defining the evolution of the system under consideration. The governing equation(s) involves the unknown(s) and their first order partial derivative(s) with respect to this variable. Time variant Schrodinger equations where the unknown is the wavefunction which is responsible for the probability density for the system and Liouville equations for the statistical mechanics where the unknown is somehow responsible for a density in the systems' phase space (here we use the plurality since both case may differ from Hamiltonian to Hamiltonian). Certain PDE(s), depending on so-called spatial coordinates, govern the behavior of the system in these and similar cases even though the partial differential equation nature is not necessarily needed. Hence we give the following equation for more abstractioning i∂ψ(t)/∂t=^Lψ(t) where we call the unknown entity ψ(t) "wavefunction" by following the quantum mechanical tradition despite ψ(t) need not be a true function. It may be anything like vector, matrix, function, or, operator as long as it lies in an appropriately defined Hilbert space. In this sense it has the abstract meaning "vector" (but not necessarily a Cartesian vector). L stands for a linear operator (which is not necessarily a partial differential operator) mapping from the Hilbert space, where ψ(t) lies, to the same space. Even though it is not explicitly shown here the system is characterized by certain operators we call "System Operators" like the positions and momenta in the case of quantum mechanics. We denote these operators by s1,...,sn or in a shorthand notation s. One way to solve the equation in (1) is to find the vector ψ(t) which may be not so technically easy as its first glance appearence implies even when b L does not explictly depend on t. This autonomy is not so much greater limitation since it can be provided for us even (1) is nonautonomous at the expense of extending the space spanned by ψ(t) to a higher dimension. The second possibility is the utilization of the expectation values of the system operator s and its outer powers. This excludes the determination of ψ(t) but necessitates the evaluation of the expectation values for all nonnegative outer powers of the state operator. A vector ODE is constructed for each outer power of the state vector by using (1). However, the action of the commutator with L on each outer power is required. By following the general property encountered in the traditional cases we represent these actions in terms of certain Taylor expansion in outer powers of the state operator. Thus we arrive at an infinite set of ODEs with an infinite constant coefficient matrix we call "Evolution Matrix". The formal solution of this set of ODEs can be obtained in terms of a time variant exponential matrix over the Evolution Matrix and the initial value vector. Talk focuses on certain details of these and some related issues.
机译:在科学和工程学中,尤其是在化学和物理领域,存在大量以抛物线型PDE为特征的系统。这些系统具有标量变量,通常称为时间,定义了所考虑系统的演化。控制方程涉及该变量的未知数及其一阶偏导数。时变Schrodinger方程,其中未知数是负责系统概率密度的波函数,而Liouville方程则是统计力学问题,其中未知数是导致系统相空间密度的原因(此处我们使用复数是因为情况可能因哈密顿量而异)。即使不一定需要偏微分方程性质,某些PDE也取决于所谓的空间坐标来控制系统在这些和类似情况下的行为。因此,我们给出以下等式来更抽象化i∂ψ(t)/∂t= ^Lψ(t),尽管不需要ψ(t),但通过遵循量子力学传统,我们将未知实体ψ(t)称为“波函数”。是一个真正的功能。只要位于适当定义的希尔伯特空间中,它就可以是矢量,矩阵,函数或运算符之类的任何东西。在这种意义上,它具有抽象含义“向量”(但不一定是笛卡尔向量)。 L表示从ψ(t)所在的希尔伯特空间到同一空间的线性算子(不一定是偏微分算子)。即使此处未明确显示,该系统也具有某些算子的特征,我们称其为“系统算子”,如量子力学中的位置和动量。我们用s1,...,sn或简写s表示这些运算符。解决(1)中方程的一种方法是找到向量ψ(t),即使b L不明显取决于t,乍看之下它在技术上也不那么容易。这种自治并没有太大的限制,因为即使(1)是非自治的,也可以为我们提供,但要以将ψ(t)跨越的空间扩展到更高的维度为代价。第二种可能性是利用系统运营商的期望值及其外部能力。这排除了对ψ(t)的确定,但需要评估状态运算符的所有非负外部幂的期望值。通过使用(1)为状态向量的每个外部幂构造向量ODE。但是,需要换向器对每个外部电源施加L的作用。通过遵循传统案例中遇到的一般属性,我们用泰勒在国家运营商的外部权力中的一定扩张来表示这些行为。因此,我们得到了具有无限常数系数矩阵(称为“进化矩阵”)的ODE的无限集合。可以根据Evolution矩阵和初始值向量上的时变指数矩阵来获得这组ODE的形式化解。谈话重点关注这些问题和某些相关问题的某些细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号