首页> 外文会议>Knowledge-Based Intelligent Information and Engineering Systems pt.1; Lecture Notes in Artificial Intelligence; 4251 >User Preference Through Learning User Profile for Ubiquitous Recommendation Systems
【24h】

User Preference Through Learning User Profile for Ubiquitous Recommendation Systems

机译:通过学习普遍使用的推荐系统的用户配置文件的用户偏好

获取原文
获取原文并翻译 | 示例

摘要

As ubiquitous commerce is coming, the ubiquitous recommendation systems utilize collaborative filtering to help users with fast searches for the best suitable items by analyzing the similar preference. However, collaborative filtering may not provide high quality recommendation because it does not consider user's preference on the attribute, the first rater problem, and the sparsity problem. This paper proposes the user preference through learning user profile for ubiquitous recommendation systems to solve the current problems. In addition, to determine the similarity between the users belonging to particular categories and new users, we assign different statistical values to the preference through learning user profile. We evaluated the proposed method on the EachMovie dataset and it was found to significantly outperform the previously proposed method.
机译:随着无处不在的商业的到来,无处不在的推荐系统利用协作过滤通过分析相似的偏好来帮助用户快速搜索最合适的商品。但是,协作过滤可能不会提供高质量的推荐,因为它没有考虑用户对属性,第一评级者问题和稀疏性问题的偏好。本文针对普遍存在的推荐系统,通过学习用户资料来提出用户偏好,以解决当前的问题。此外,为了确定属于特定类别的用户和新用户之间的相似性,我们通过学习用户资料为偏好分配了不同的统计值。我们在EachMovie数据集上评估了所提出的方法,发现它明显优于先前提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号