首页> 外文会议>KDD-09 workshop on statistical and relational learning in bioinformatics 2009 >Identification of structurally important amino acids in proteins by graph-theoretic measures
【24h】

Identification of structurally important amino acids in proteins by graph-theoretic measures

机译:通过图论方法鉴定蛋白质中结构上重要的氨基酸

获取原文
获取原文并翻译 | 示例

摘要

Identifying key residues important for maintaining a protein structure is a non-trivial problem in Computational Biology. In this paper, we present results based on a graph model representing protein structures. This model considers the structure as residue-residue interactions in order to capture protein stability. We propose the application of approximate minimum vertex cover algorithms (MVC) as a novel approach for identifying the structurally important residues, which we shall refer to as key residues. We establish that MVC based algorithms captures the essence of protein structural stability by correlation analysis with ΔΔG, the change of protein free energies due to amino acid variations. We also benchmark our approach with popular approaches for analyzing large complex networks -betweenness, and Eigenvector centrality. Our findings are such that they do not correlate well with ΔΔG. We give explanations from the free energy point of view, which shall benefit future development measures for protein structure stability.
机译:鉴定对于维持蛋白质结构重要的关键残基在计算生物学中是一个重要的问题。在本文中,我们基于代表蛋白质结构的图形模型展示了结果。该模型将结构视为残基-残基相互作用,以捕获蛋白质稳定性。我们建议应用近似最小顶点覆盖算法(MVC)作为一种识别结构上重要残基的新方法,我们将其称为关键残基。我们建立了基于MVC的算法,通过与ΔΔG进行相关性分析来捕获蛋白质结构稳定性的本质,即由于氨基酸变化而引起的蛋白质自由能的变化。我们还使用分析大型复杂网络的流行方法(介于中间和特征向量中心性)来对我们的方法进行基准测试。我们的发现是,它们与ΔΔG的相关性不高。我们从自由能的角度进行解释,这将有利于蛋白质结构稳定性的未来发展措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号