【24h】

Improving Energy Efficiency of Hadoop Clusters using Approximate Computing

机译:使用近似计算提高Hadoop集群的能源效率

获取原文

摘要

There is an ongoing search for finding energy-efficient solutions in multi-core computing platforms. Approximate computing is one such solution leveraging the forgiving nature of applications to improve the energy efficiency at different layers of the computing platform ranging from applications to hardware. We are interested in understanding the benefits of approximate computing in the realm of Apache Hadoop and its applications. A few mechanisms for introducing approximation in programming models include sampling input data, skipping selective computations, relaxing synchronization, and user-defined quality-levels. We believe that it is straightforward to apply the aforementioned mechanisms to conserve energy in Hadoop clusters as well. The emerging trend of approximate computing motivates us to systematically investigate thermal profiling of approximate computing strategies in this research. In particular, we design a thermal-aware approximate computing framework called tHadoop2, which is an extension of tHadoop proposed by Chavan et al. We investigated the thermal behavior of a MapReduce application called Pi running on Hadoop clusters by varying two input parameters - number of maps and number of sampling points per map. Our profiling results show that Pi exhibits inherent resilience in terms of the number of precision digits present in its value.
机译:当前正在寻找在多核计算平台中寻找节能解决方案的方法。近似计算就是这样一种解决方案,它利用了应用程序的宽容性质来提高从应用程序到硬件的计算平台不同层的能效。我们有兴趣了解Apache Hadoop及其应用程序领域中近似计算的好处。在编程模型中引入近似的几种机制包括对输入数据进行采样,跳过选择性计算,放松同步以及用户定义的质量级别。我们认为,应用上述机制来节省Hadoop集群中的能源也很简单。近似计算的新兴趋势促使我们在本研究中系统地研究近似计算策略的热分析。特别是,我们设计了一个热感知的近似计算框架tHadoop2,它是Chavan等人提出的tHadoop的扩展。我们通过更改两个输入参数-地图数和每个地图的采样点数,研究了在Hadoop集群上运行的名为Pi的MapReduce应用程序的热行为。我们的分析结果表明,就其值中存在的精确数字位数而言,Pi表现出固有的弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号